UNCLASSIFIED

AD 286 035

Reproduced by the

ARMED SERVICES TECHNICAL INFORMATION AGENCY
ARLINGTON HALL STATION
ARLINGTON 12, VIRGINIA

UNCLASSIFIED

NOTICE: When government or other drawings, specifications or other data are used for any purpose other than in connection with a definitely related government procurement operation, the U. S. Government thereby incurs no responsibility, nor any obligation whatsoever; and the fact that the Government may have formulated, furnished, or in any way supplied the said drawings, specifications, or other data is not to be regarded by implication or otherwise as in any manner licensing the holder or any other person or corporation, or conveying any rights or permission to manufacture, use or sell any patented invention that may in any way be related thereto.

Best Available Copy

DEPARTMENT OF INDUSTRIAL AND ENGINEERING ADMINISTRATION

SIBLEY SCHOOL OF MECHANICAL ENGINEERING

CORNELL UNIVERSITY

ITHACA, NEW YORK

WEIGULL TABLES FOR BIO-ASSAYING AND FATIGUE TESTING*

Technical Report No. 8 September, 1962

Department of the Navy
Office of Naval Research
Contract Number: Nonr-401(43)

Henry P. Goode and John H.K. Kao
Department of Industrial and Engineering Administration
Cornell University
Ithaca, New York

^{*}This research was supported by the Office of Naval Research.

Reproduction in whole or in part is permitted for any purpose of the United States Government.

WEIBULL TABLES FOR BIO-ASSAYING AND FATIGUE TESTING*

Summary

This report presents an acceptance sampling procedure and tables of related sampling inspection plans for the evaluation of lot quality in terms of reliable life (or its complement, quantile life). The Weibull distribution (including the exponential distribution as a special case of the Weibull) is assumed as a statistical model for item lifelength. The evaluation of sample items is by attributes with life testing being truncated at the end of a specified period of time. Tables of factors are also provided from which other sampling inspection plans of desired form can be designed and for use in evaluating the operating characteristics of other specified sampling inspection plans in terms of item reliable life.

Introduction

The sampling inspection tables and procedures discussed in this paper evaluate item life for the lot in terms of reliable life (or its equivalent, quantile life) which is defined as the life beyond which some specified proportion of the items in the lot can be expected to survive (see the appendix of this report). They have been prepared to supplement the Weibull plans and procedures for the evaluation of lot quality in terms of mean life and in terms of hazard rate at some specified life which were presented by the authors and published in the Proceedings of the Seventh National Symposium and the Eighth National Symposium (respectively) on Reliability and Quality Control. Readers interested in the application of the Military 105C plans for mean life and hazard rate evaluation will find similar plans for such application in other reports by the authors. 3,4

This and related material on plans for mean life and for hazard rate has also been published as Department of Defense Technical Reports TR3 and TR4. 5,6

These papers previously published discuss the Weibull distribution at some length, the underlying assumptions required, the relationship between it and the exponential distribution, and much related material. Also, an extensive discussion of the Weibull distribution as a statistical model for lifelength, together with material on estimating the Weibull parameters can be found in a paper by Kao published in the Proceedings of the Sixth National Symposium. Since this material is readily available, a general discussion of the Weibull distribution will not be repeated in this paper.

However, it may be well to note that the Weibull distribution has three parameters. The first is a scale or characteristic life parameter. For the plans and procedures presented here this parameter is not of concern and need not be known or estimated; the methods are independent of its magnitude. The second is a shape parameter, conventionally symbolized by the letter β . This parameter is quite important for the tables and methods presented in this report; they depend directly on its magnitude. For appropriate application, the magnitude of $oldsymbol{eta}$ must be known or must be assumed to approximate some given value. Such knowledge is usually obtained either directly or indirectly from the analysis of past research and inspection results. The third parameter is a location or threshold parameter, commonly symbolized by the letter $\gamma.$ For the direct use of the ratios and tables presented here, it is assumed that this parameter has zero value; that there is no initial period of item life that is completely free of any risk of failure. For many applications this will be the case. However, if it is known that γ has some value other than zero, it is very easy to allow for this known value. This point will be discussed in a following section of the report and an illustrative example will be given.

Basic tables of conversion factors (Table 1 and Table 2) for the design of required acceptance plans or the evaluation of specified plans, and comprehensive tables of single-sampling acceptance inspection plans have been computed for an extensive range of β , or shape parameter, values. For the conversion factors, β values of $\frac{1}{5}$, $\frac{1}{2}$, $\frac{2}{3}$, 1, $1\frac{2}{3}$, 2, $2\frac{1}{2}$, $3\frac{1}{3}$, 4, and 5 have been covered. Tables of sampling inspection plans have been provided for the range of β values most commonly encountered with the specific values of $\frac{1}{3}$, $\frac{1}{2}$, $\frac{2}{3}$, $\frac{1}{3}$, $\frac{1}{3}$, $\frac{2}{3}$, 2, and $\frac{1}{2}$ being included. It should be pointed out that eta values of less than I apply to products whose hazard rate is relatively high in early life and which decreases with the passage of time. The smaller the value for β , the greater the rate of decrease. Such parameters seem to apply generally to a wide range of electronic components such as resistors and transistors. For a β value of exactly I, the Weibull distribution is the same as the exponential, the exponential being, in effect, a special case of the Weibull. At this parameter value the hazard rate is constant and independent of the passage of time. For $\boldsymbol{\beta}$ values greater than I the hazard rate is relatively low early in life and increases with the passage of time. The larger the value for β , the greater the rate of increase. This form of hazard rate pattern is typical of products for which failure is due to wear out or fatigue, as may be the case, for example, with ball bearings. Thus it should be obvious that the value for this parameter is critical and must be known for the appropriate application of a sampling inspection plan. This is true also, one should observe, in the case of the exponential; it must be known that the hazard rate is constant ($\beta = 1$) if exponential plans are to be appropriately applied.

For each β value included, factors and sampling plans have been computed for each of three reliability indices (or proportions), namely .5, .90, and .99, selected for use in this study to define reliable life.

It can readily be seen that the reliable life ρ_r is equivalent to the quantile of order (I-r) of a distribution (see Reference 8, p. 181). The reliability index r is the specified survival probability at time x and the reliable life ρ_r is the theoretical lifelength associated with r. For example, for a product if ρ = 1000 hours and r = .90, 90% of the items can be expected to have a life of 1000 hours or longer. Hence if r is chosen to be close to unity, ρ_r will be close to zero. On the other hand, if r can be tolerably small, then ρ_r can be very large indeed. The two trivial cases have been omitted here for r = 1 and 0 whence ρ_r = 0 and ∞ respectively. A special case of ρ_r is when r = $\frac{1}{2}$, then it is known as median life §.

A notable area of application of the reliable life concept can be found in the anti-friction bearing industry where the rated bearing life for a given application is usually the reliable life with the reliability index r set equal to 90%. A bearing manufacturing firm, for example, lists their bearing capacities based upon LB-10 Life ($\rho_{.90}$) equal to 3000 hours and a speed of 500 rpm. If a life of other than 3000 hours is desired or the actual speed is different from 500 rpm, the load capacity can be appropriately adjusted by using one of the so-called trade-off or acceleration factors similar to those well-known in the electronic component industry. (Unfortunately, this information for major electronic components is still not widely available.)

Another example of application employing the notion of reliable life is found in the area of biological assaying where, for example, the efficiency or potency of a poisonous material (insecticide or herbicide) is characterized by its median lethal dose, $LD50^9$ which is the theoretical dosage corresponding to the insect's (or plant's) reliable life with r=50% or more, commonly known as its median life.

There are numerous other applications that can be cited in the areas of fatigue testing of metals or components, sensitivity testing of fuzes or primers, and breakdown voltage of dielectric materials or insulators, to-just name a few. For this reason, the examples in this report which demonstrate the use of various tables will not be restricted to any specific area of application, although the report is directed mainly to the areas of fatigue testing and biological assaying.

In the area of fatigue (including failures of most anti-friction bearings) testing where the fatigue life for p % survival 10 , 11 is exactly equal to the reliable life for r = p/100, the Weibull distribution is found useful 12 , 13 . On the other hand, in the area of biological assaying, although the lognormal distribution was traditionally used 9 , the Weibull distribution which can be made to have a shape similar to a lognormal distribution should be equally useful.

The Form of the Acceptance Procedure

The following acceptance inspection procedure has been assumed for the plans and methods covered in this paper:

- (a) Select at random a sample of n items from each submitted lot.
- (b) Place these sample items on life test for some preassigned test time t.
- (c) Determine the number of items that fail prior to the termination of the test (at time t).
- (d) Compare the number of items that fail with an acceptance number c specified for the selected plan. If the number failed is equal to or less than the acceptance number, accept the lot; if the number failed exceeds it, reject the lot.

Life length and the test period, t, may be in any appropriate measurable units -- minutes, hours, or stress cycles endured, for example. While only

single-sample acceptance plans are included in this report, plans may be designed for double-sampling or multiple sampling if desired through use of the basic conversion ratios provided.

The Basic Conversion Factors

One may note that the above acceptance procedure is of the familiar attribute form. The only modification is that the item quality of interest is life and that testing for life is truncated at some time t. Thus the lot is effectively evaluated in terms of the proportion of items, p', that can be expected to fail before the test truncation time. With the shape parameter of the distribution known or given and with the test time, t, specified, this proportion, p', is a function only of the reliable life for the lot, ρ , and the reliability index, r, of the lot that is to have this reliable life. Hence the operating characteristics (see appendix for derivation) of any specified sampling-inspection plan depend only on $\boldsymbol{\tau}$, $\boldsymbol{\rho}$, and r (given a value for β). So that the ratios and sampling plans will be available for general use, the dimensionless quantity t/ρ has been employed rather than working in terms of specific values for test truncation time and reliable life. In application it will be found quite simple to convert from the ratios to specific values of t and ρ or from specified values for these measures to the equivalent ratio. The proportion r expected to survive beyond the reliable life, p, could not be cared for in this convenient manner. It has been necessary to compute separately basic factors and tables of plans for each selected value of r. As previously mentioned, these are r = .50, r = .90, and r = .99.

As a foundation for the reliable life plans included in this report, tables of basic conversion factors have accordingly been computed to show for the Weibull distribution the relationship between p' and the ratio t/p.

These factors also may provide a basis for the design of other sampling inspection plans for reliable life using techniques commonly employed with the binomial, hypergeometric, or Poisson distributions to design ordinary attribute plans. Also, the conversion factors may be used to evaluate plans in use or ones that have been specified for use. Examples of such applications will be shown.

These tables of factors will be found at the end of this report as Tables I, a, b, c, and 2, a, b, c, r = .50 for a, r = .90 for b, and r = .99 for c. For convenience in tabulation and use, the value $(t/\rho) \times 100$ has been employed rather than t/ρ and ρ' is expressed in percent rather than as a decimal fraction. Table I lists values for $(t/p) \times 100$ for specified values for p'(%). Table 2 lists values for p'(%) for specified values for (\dagger/ρ) x 100. In each case, separate tables have been prepared for each of the selected values for r. These two sets of tables are meant to supplement each other so as to provide convenient conversion either way. One may also note that by the provision of these two supplementary sets, a very considerably wider range of conversion values is provided; the factors in one table are considerably expanded in range in the region where they are compressed in the other table and vice versa. The values selected for p'(%) and (\dagger/ρ) x 100 from which to convert have been determined by the use of a standard preferred number series. Details of the mathematical steps involved in establishing the $(t/\rho) \times 100$ and p' relationships will be found in the appendix at the end of the report.

Example (I)

A sampling inspection plan is required for the evaluation of production lots of a product in terms of reliable life with reliable life defined as the life beyond which 50% of the items can be expected to survive. A reliable life of 1000 hours is considered acceptable and for lots with this

reliable life or longer the probability of acceptance should be high, .95 or more. A reliable life of 400 hours is considered unacceptable and lots with this reliable life or less should have a low probability of acceptance, .05 or less. A test truncation time of 100 hours is to be employed. Experience has indicated the Weibull distribution applies with an expected value for the shape parameter of $l\frac{2}{3}$ and for the location parameter of 0. Thus, $\rho = 1000$ at the AQL for which $P(A) \ge .95$, $\rho = 400$ at the RQL for which $P(A) \ge .05$, $\rho = .50$, ρ

Through the use of Table 2a which contains conversion factors for r=.50, values for p' at the AQL and the RQL can be determined. For the values for t and ρ specified,

$$(t/\rho) \times 100 = (100/1000) \times 100 = 10$$
 (at the AQL)

$$(t/\rho) \times 100 = (100/400) \times 100 = 25$$
 (at the RQL).

By entering Table 2a with these two values and reading from the column for the shape parameter value, β , of $i\frac{2}{3}$, it is found that at the AQL p'=1.48(%) and at the RQL p'=6.45(%). These are the respective probabilities of item failure before the end of the IOO hour testing period.

With these two values for p', values for n, the sample size, and c, the acceptance number can be determined through any of the well-known methods ordinarily used in the design of attribute sampling inspection plans. The Poisson-based tables prepared by Cameron will serve well for this example. Through use of these tables it is found that an acceptance number of either 4 or 5 will meet the requirements reasonably well. Through further use of Cameron's tables and with an acceptance number of 5, it is found that a sample size of 164 will provide the required consumer's risk. With this acceptance number and sample size, the tables indicate the probability of acceptance at the acceptable quality level will be between .95 and .975 so

that the producer's risk requirement will also be met. An alternative procedure for determining c and n and one that is somewhat more precise is to use the beta probability chart (which is based on the binomial distribution) prepared by $\rm Kao.$ 15

Example (2)

For another application of sampling inspection in terms of reliable life, a Military Standard Plan has been specified, one with an AQL of 1.5% and Sample Size Code Letter K. For single sampling, the sample size for this plan is 110 items and the acceptance number 4. Reliable life is to be defined as the life beyond which 90% of the items can be expected to survive, or r = .90. Testing of sample items is to be truncated at 400 hours. The Weibull distribution can be assumed as a lifelength model with $\beta = 2\frac{1}{2}$ and $\gamma = 0$. The user of this plan would like to know what its operating characteristics are in terms of reliable life and in particular what protection he as the consumer will receive.

To determine these characteristics, the first step is to determine for the n and c specified the p' values associated with selected probabilities of acceptance. These values may be obtained approximately by reading them from the Operating Characteristic curves supplied as a part of the 105 Plans or by use of cumulative tables of the Poisson or binomial distribution. Examination of the operating characteristic curve for the selected plan indicates that at P(A) = .95, P' = 1.8% and at P(A) = .10, P' = 7.3% (approximately, in both cases). A check through use of Poisson tables indicates these values are reasonably close to the right percentages.

The next step is to use these percentages to determine from Table 1b, which gives tables of conversion factors for r=.90, the corresponding $(t/\rho) \times 100$ values. With these values and with the value for t specified,

only a simple computation is required for the final step necessary to find the desired reliable life values. At the acceptable quality level for which p'=1.8(%), by interpolation in the column of factors for $\beta=2\frac{1}{2}$, a value for $(\pm/\rho)\times100$ of 49.4 can be found. With $\pm=400$, $(\pm00/\rho)\times100=\pm9.4$ or $\rho=810$ hours. This, then, is the "acceptable" reliable life; the reliable life for which the probability of acceptance will be high. At the unacceptable quality level for which p'=7.3(%), interpolation in Table 1b will give a value of 87.5 will be found for $(\pm/\rho)\times100$. Substitution of $\pm=400$ gives $(\pm00/\rho)\times100=87.5$ or $\rho=460$ hours. Thus if the reliable life is ±60 hours or less the probability of acceptance will be low, .10 or less.

Under the use of the Sample Size Letter, K, selected for this example, alternatives of double-sampling and multiple sampling are available. If double sampling is employed, for example, the first sample size would be 75 and the second 150. The acceptance number would be 2 for the first sample and the rejection number 8. For the combined samples the acceptance number would be 7 and the rejection number 8, as specified in the 105 Standard. All other usual procedures for double-sampling would be employed. The test time for the first sample would be 400 hours, the same as for single sampling; likewise the test time for the second sample would have to be 400 hours. One may note that a possible reduction by double-sampling in the number of sample items that have to be inspected in the long run can be achieved only by a doubling of the duration of the life-testing time for some lots. Under double (or multiple sampling) employing the same Sample Size Code Letter and AQL the operating characteristics will obviously be closely the same as for single sampling.

Example (3)

Suppose that in another application the requirements and conditions are

the same as for Example (2) with the exception that γ , the location or threshold parameter, is equal to 250 hours. As before, at P(A) = .95, p' = 1.8% and the corresponding (t/ρ) x 100 value is 49.4. Likewise, the (\dagger/ρ) x 100 value at P(A) = .10 for which p' = 7.3% is 87.5. However, now ρ must be considered in terms of $\gamma = 0$. A new value t_0 , which is $t_0 = t - \gamma =$ 400-250 = 150 must be computed and used in working with the factors from the table. At the acceptable quality level now $(t_0/\rho_0) \times 100 = 49.4$ or (150/ β_0) x 100 = 49.4 which results in a value for β_0 of 300 hours for the relative reliable life. This is converted back to absolute or real terms by simply adding the value for γ ; thus $\rho = 300+250 = 550$ hours for the acceptable reliable life. At the unacceptable quality level, (t_0/ρ_0) x 100 = 87.5 or $(150/\rho_0) \times 100 = 87.5$ which results in a value for ρ_0 of 170 hours. The real or absolute value for the unacceptable reliable life is 170+ 250 or 420 hours. In any case of use of the sampling plans or basic conversion factors presented in this report, when γ has some value greater than 0, all that must be done is to work in terms of t_0 and ρ_0 where t_0 = t - γ and ρ_0 = ρ - $\gamma.$ The solution in terms of t_0 or ρ_0 is then converted back to absolute terms by adding the value for γ .

Sampling Inspection Plans

This report also includes twenty-four tables of sampling inspection plans. These tables cover eight values of the shape parameter, β , over the range most frequently encountered in practice. For each β value, tables have been prepared for each of the three values of the reliability index, r, for which the relationship between p' and (t/ρ) x 100 has been determined. These tables, Tables 3al through 3c8, will be found at the end of the report.

Each table lists for a range of acceptance numbers, c, the minimum sample size, n, to be employed. A plan (c and n) is available for a variety

of $(\dagger/\rho) \times 100$ ratios and for each ratio for acceptance numbers ranging from 0 to 10. The plans have been designed so that if 100 times the ratio between the test-truncation time, t, and the reliable life for the lot, ρ , is equal to the ratio value in the selected column heading, the probability of acceptance, P(A) will be .10 or less. That is, a selected plan assures with 90% confidence or more the rejection of lots for which the $(\dagger/\rho) \times 100$ ratio is equal to or greater than the value shown in the column heading. It has been assumed that in the use of these plans the consumer's risk will be of most importance. For this reason the plans have been cataloged by their $P(A) \le .10$ ratios. These ratios (as shown in the column headings) are a common measure of consumer protection and may be regarded in the same way as LTPD (lot tolerance per cent defective) values are regarded in describing the operating characteristics of ordinary attributes and variables acceptance plans.

In addition, for each of the plans the $(t/\rho) \times 100$ ratio has been determined for which the probability of acceptance is .95 or more. Each of these $P(A) \ge .95$ ratio values will be found enclosed in parentheses immediately under the corresponding sample size number. These ratio values may be regarded in the same way that AQL (acceptable quality level) values are as a measure of the producer's risk. If the item life distribution for a lot is such that its $(t/\rho) \times 100$ ratio is equal to or less than the table heading value, the selected plan assures P(A) = .95.

Thus the two ratio values, the one in the column heading and the one in parentheses immediately below the sample size number, describe in broad terms the operating characteristics of each plan. If one or the other of these values is specified for an acceptance inspection application, with additional information, a suitable plan may be selected from the tables. Alternatively, the pair of values may be used to determine in approximate

that is in use and whose values for n and c match reasonably well one of the plans in the tables.

To make these plans available for general use, the binomial distribution and the Poisson distribution were employed in their design. For this reason the size of the lot should be relatively large compared to the size of the sample, just as in the case of most other published tables of attribute inspection sampling plans. If the sample requires taking a substantial portion of the lot, the probability values assigned to the (t/ρ) x 100 ratios will not precisely apply. This point, however, should present little difficulty in practice. Binomial tables prepared by Grubbs 16 were used in the design of all plans using acceptance numbers, c, up to 9 and sample sizes, n_2 up to 150. The remainder of the plans, those for c = 10 and for sample sizes over 150, were designed by employing the Poisson distribution as an approximation to the binomial. Here use was made of np' values prepared by Cameron. 14 In each case of changing from the binomial to the Poisson distribution, the match in sample sizes was checked. It was found to be close in all cases. Furthermore, the slight differences that were found were on the conservative side; the sample size under the Poisson was slightly larger than the number theoretically required under the binomial assumption.

In addition to making sure the sample size is not so large that it constitutes a substantial portion of the lot, a few other practical points in application should be observed. One is that if specified sample sizes are for practical reasons to be rounded off to the nearest number ending in five or zero (or to the nearest one hundred), this rounding off should be to a number larger than the number given in the table. This will assure the retention of the specified consumer's protection, P(A) = .10 or less.

Another point of practice that should ordinarily be followed is that if a plan is not available for which the (t/p) x 100 ratio matches closely the desired ratio, a plan should be selected from the column with the next smaller ratio value. By following this conservative practice a confidence level of 90% or greater will be maintained in assuring that the specific minimum reliable life has been met. On the other hand, if some acceptable quality level must be guaranteed (a ratio or a reliable life for which $P(A) \ge .95$) and a matching ratio value is not available in the tables, a plan with the next higher value should be used. If this is done, a lot with an acceptable reliable life will have $P(A) \ge .95$. One should also note that when plans with the desired ratios are not available in the tables, interpolation may be employed between the listed sample sizes to find a new plan that does have more nearly the desired operating characteristics. Finally, it should be mentioned that testing of sample items can be terminated after the acceptable number of failures has been exceeded. The lot is to be rejected and so further testing will have no value unless the sampling inspection data is to be used to provide an estimate of the process average for the product or the vendor. In the latter case, testing should continue for the full period, t.

Example (4)

A sampling inspection plan is required for a product which will accept with a probability of .10 or less ($P(A) \le .10$) lots whose reliable life is 400 hours or less. In this case reliable life is defined as the life beyond which 90% (r = .90) of the items in the lot will survive. It will also be desirable to be able to assure the producer that if the reliable life is 2,000 hours or more, the probability of acceptance will be high, say .95 or greater. A test period of 200 hours is to be employed. Through past experience with the product it has been established that the Weibull

distribution applies for item lifelength, with the value for β , the shape parameter, being approximately I and for γ , the threshold parameter being 0.

With these specifications for the sampling plan, 100 times the ratio of the test time, t, to the reliable life, p) is $(200/400) \times 100$ or 50 at the unacceptable reliable life of 400 hours for which $P(A) \leq .10$ has been specified. At the acceptable reliable life of 2,000 hours the $(t/p) \times 100$ ratio is $(200/2,000) \times 100$ or 20. An inspection plan meeting these ratio requirements will be found in Table 3b4 which lists plans for $\beta = 1$ and r = .90. Any plan in the fifth column (headed 50) will meet the unacceptable reliable life requirement. Of the plans assigned to this column, the last one has a ratio value of 20, the value required at the acceptable reliable life. The plan is thus to use a sample size, n, of 301 and an acceptance number, c, of 10.

Example (5)

A plan has been specified for the acceptance inspection of a product which requires that a sample of 375 items be drawn from the lot and tested for 500 hours. If no more than 7 items fail before the end of the test period, the lot is to be accepted; if more than this number fail, it is to be rejected. Data from past inspection and research indicates a value for the shape parameter, β , of $\frac{2}{3}$ applies with the location parameter, γ , being 0. The user of this plan would like to know its operating characteristics in terms of reliable life, with reliable life being defined as the median life or the life beyond which 50% of the items can be expected to survive.

An answer may be found by inspection of that portion of Table 3al which tabulates plans for $\beta=\frac{1}{3}$ and r=.50. An examination of this table indicates a plan is tabulated approximating the one to be used, the plan for c=7 and n=372. For this plan the $(t/p)\times 100$ value for which $P(A) \le .10$

is found (in the corresponding column heading) to be 1.0. By the substitution of the test period specified, 500 hours, for t in this ratio, one obtains $(500/\rho) \times 100 = 1.0$ or $\rho = 50,000$ hours. Thus if the reliable life is 50,000 hours or less, the probability of acceptance will be .10 or less. For this plan the ratio value at the acceptable reliable life is .19 (as shown by the number in parentheses under the sample size). By substitution of the real value for t, $(500/\rho) \times 100 = .19$ or $\rho = 263,000$ hours. These two values for reliable life describe in a practical way the operating characteristics of the plan that has been specified.

Example (6)

For a sixth example consider a case for which it can be assumed the shape parameter, β , will equal approximately 2 and the threshold parameter, γ , will equal 1200 cycles. A plan is required for which the P(A) = .10 or less if the reliable life is 6,000 cycles or less with reliable life being defined as the life beyond which 99% of the items will survive. A test truncation time of 5,000 cycles seems reasonable and could be used. The user would also like to know the effect of cutting the test time to 3,000 cycles.

Reference will be to Table 3c7 which tabulates plans for $\beta=2$ and for r=.99. The first step is to convert the specified values for t and ρ to relative values in terms of $\gamma=0$. Thus $t_0=5,000-1,200=3,800$ cycles and $\rho_0=6,000-1,200=4,800$ cycles. The $(t_0/\rho_0)\times 100$ ratio is $(3,800/4,800)\times 100=79$ or approximately 80. Any plan in the column with this ratio heading in the table of plans for $\beta=2$ and r=.99 will meet the rejectable quality level requirements. One possibility is the plan for which n=349 and c=0. This allows the minimum sample size possible.

Consider now the proposal to cut the test time to 3,000 cycles. In this case $t_0=3,000-1,200=1,800$ cycles and $\rho_0=6,000-1,200=4,800$ cycles. The $(t_0/\rho_0)\times 100$ ratio is now $(1,800/4,800)\times 100=38$. The nearest ratio available in the table is 40. In the column with this ratio heading, the best plan available (from the standpoint of sample size) is the one for which c=0 and n=1400. The penalty for reducing the test period is thus to increase the sample size from 349 to 1400.

It might be interesting to compare these two possibilities in terms of the acceptable reliable life, the life for which P(A) = .95. For the first one (n = 349 and t = 5,000), the ratio at the AQL is 12 (as shown by the figure in parentheses). Thus $(t_0/\rho_0) \times 100 = 12$ or $(3,800/\rho_0) \times 100 = 12$ from which one determines that ρ_0 = 32,000 cycles. Converted back to absolute terms, $\rho = \rho_0 + \gamma = 32,000 + 1,200$ or 33,200 cycles. This must be the reliable life if the lot is to have a high probability of acceptance. For the second possibility (n = 1400 and t = 3,000), the ratio at the AQL is 5.9. Thus $(1,800/\rho_0) \times 100 = 5.9 \text{ or } \rho_0 = 31,000 \text{ cycles.}$ Converted to absolute terms, $\rho = 31,000 + 1,200$ or 32,200 cycles which is approximately the same requirement as for the first plan. Thus it should make no difference to the producer which plan is used. These last computations illustrate a unique feature of the Weibull plans for life and reliability testing; the ability of a plan to discriminate between good and bad lots depends on the size of the acceptance number rather than on the size of the sample (as is the case for ordinary attribute sampling plans). For any given acceptance number and for the same value for eta a nearly constant ratio will be found between the acceptable reliable life and the unacceptable reliable life regardless of the general level of these lives. This will also be approximately the case regardless of the value chosen for the proportion r that must survive.

This point has been fully demonstrated in the author's reports for the Weibull mean life plans 1,3 and the Weibull hazard rate plans 2,4 Table 3 of Reference I (or alternatively Table 4 of Reference 3) gives approximate values for μ .95 $^{\prime}\mu$.10. These same ratios can be used for the reliable life plans presented here, that is, they can be used as $\rho_{.95}/\rho_{.10}$ values. If both the acceptable reliable life with P(A) = .95 and the unacceptable reliable life with P(A) = .10 are specified, use of this table of values will indicate at once what the acceptance number should be. This information is a very helpful start in designing other details of a plan to meet given needs. In the above application, for example, if an acceptable reliable life of 33,000 cycles had been specified, $\rho_{\text{O}}(.95)^{/\rho_{\text{O}}(.10)} = 31,800/4,800$ or 6.7. Reference to the table just described would indicate that for β = 2 the acceptance number c would have to be 0. On the other hand, if an acceptable reliable life of 15,000 cycles had been specified instead (for which ρ_0 = 12,000 - 1,200 or 10,800), the $\rho_0(.95)^{\prime}\rho_0(.10)$ ratio would be 10,800/4,800 or 2.2. Reference to the table would indicate the acceptance number must be 3. Reference again to Table 3c7 of this report would indicate the sample size must accordingly be 1,010 if the test period is to be 6,000 cycles (in which case the t/p ratio is 80) or must be 4,050 if the test period is to be 3,000 cycles (in which case the t/ρ ratio is 40).

Appendix

Reliable Life as a Life-quality Criterion

This appendix describes the notion of reliable life or quantile life of complementary order which is used as the life-quality criterion for items subject to the testing procedures given in this report.

For an arbitrary lifelength distribution defined over $\gamma \le x < \infty$ (γ is the threshold or location parameter) with c.d.f. = F(x) and p.d.f. = f(x), the reliability function = R(x) = I-F(x) and a reliability index r (0 < r < 1), the reliable life ρ_r (see Reference II) is the solution of x in R(x) = r or,

$$\rho_{r} = R^{-1}(r) \tag{A1}$$

where R^{-1} is the inverse function of R.

If the lifelength of an item follows a Weibull distribution of the form:

$$F(x) = I - \exp \left[-\left(\frac{x-\gamma}{\eta}\right)^{\beta}\right], x \ge \gamma; \eta, \beta > 0 ;$$

$$= 0, \text{ otherwise}$$
(A2)

and its p.d.f.,

$$I(x) = \frac{\beta}{\eta} \left(\frac{x-\gamma}{\eta}\right)^{\beta-1} \exp\left[-\left(\frac{x-\gamma}{\eta}\right)^{\beta}\right], x \ge \gamma, \eta, \beta > 0,$$

$$= 0, \text{ otherwise}$$
(A3)

Then the reliable life of order r will be,

$$\rho_{r} = \gamma + \eta \left(-10. r\right)^{b} \tag{A4}$$

where b = $1/\beta$. In this report, since γ is assumed to be known, Equations (A2, A3 & A4) are not used. Instead, Equations (A5, A6, & A7) are used.

For γ known, there is no loss of generality by assuming γ = 0. In this case,

$$F(x) = 1 - \exp[-(x/\eta)^{\beta}] \quad \text{and}$$
 (A5)

$$f(x) = \frac{\beta}{\eta} (x/\eta)^{\beta-1} \exp[-(x/\eta)^{\beta}]$$
(A6)

and the reliable life is,

$$P_r = \eta \left(-\ln r\right)^b \tag{A7}$$

Now let the testing time be truncated at t and let p' be the probability of failure of an item prior to t, then combining (A5) and (A7),

$$P' = F(t) = 1 - \exp\{-[t(-\ln r)^b/\rho_r]^\beta\}$$
 (A8)

which can be simplified as,

$$p' = 1 - \exp[(t/\rho_r)^{\beta} \ln(r)]$$
 (A9)

It can be noted now that if the truncation time coincides with ρ_r , one would always (for any $\beta>0$) have $p'=1\text{-}\exp[\ln(r)]=1$ - r, which is to be expected. Also since 0 < r < 1, $\ln(r)$ will always be negative and finite; thus the Weibull c.d.f. in the form of Equation (A8) or (A9) satisfies the conditions: F(0)=0 and $F(\infty)=1$ and the c.d.f. is monotonic in t for $\beta>0$.

The inverse of Equation (A9) gives,

$$t/\rho_r = [\ln(1-p') / \ln(r)]^b$$
 (A10)

Notice that Equation (A6) also asserts that for any $\beta>0,\ p'=1\text{-r}$ if $t=\rho_r$.

References

- I. Goode, Henry P. and Kao, John H.K., "Sampling Plans Based on the Weibull Distribution," <u>Proceedings of the Seventh National Symposium on Reliability and Quality Control</u>, 1961, pp. 24-40.
- 2. Goode, Henry P. and Kao, John H.K., "Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull Distribution (Hazard Rate Criterion)," Proceedings of the Eighth National Symposium on Reliability and Quality Control, pp. 37-58.
- 3. Goode, Henry P. and Kao, John H.K., "An Adaptation of the MIL-STD-105B Plans to Reliability and Life Testing Applications," <u>Transactions of the Fifteenth Annual Convention of the American Society for Quality Control</u>, 1961, pp. 245-259.
- 4. Goode, Henry P. and Kao, John H.K., "Use of the Military Standard Plans for Hazard Rate Under the Weibull Distribution," <u>Transactions of the Sixteenth Annual Convention of the American Society for Quality Control</u>, 1962, pp. 371-389.
- 5. Quality Control and Reliability Technical Report TR3, Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull Distribution (Mean Life Criterion), Office of the Assistant Secretary of Defense (Installations and Logistics), U.S. Government Printing Office, 1961.
- 6. Quality Control and Reliability Technical Report TR4, <u>Sampling Procedures and Tables for Life and Reliability Testing Based on the Weibull Distribution (Hazard Rate Criterion)</u>, Office of the Assistant Secretary of Defense (Installations and Logistics), U.S. Government Printing Office, 1962.
- 7. Kao, John H.K., "A Summary of Some New Techniques on Failure Analysis,"

 Proceedings of the Sixth National Symposium on Reliability and Quality Control in Electronics, 1960, pp. 190-201.
- 8. Cramer, Harald, "Mathematical Methods of Statistics," Princeton University Press, Princeton, N.J., 1946.

- 9. Finney, D.J., <u>Statistical Method in Biological Assaying</u>, Charles Griffin (London), 1952.
- 10. ASTM STP-91A, A Tentative Guide for Fatigue Testing and the Statistical Analysis of Fatigue Data, 1958 (A revised version including teshniques on the Weibull distribution will be published soon.)
- II. Weibull, W., <u>Fatigue Testing and the Analysis of Results</u>, Pergamon Press, 1961.
- 12. Lieblein, J. and Zelen, M., "Statistical Investigation of the Fatigue Life of Deep-groove Ball Bearings," <u>Journal of Research, National Bureau of Standards</u>, Vol. 57, No. 5, 1956, pp. 273-316.
- 13. Moyer, C.A., et al., "The Weibull Distribution Function for Fatigue Life," <u>Materials Research and Standards</u>, Vol. 2, No. 5, May, 1962.
- 14. Cameron, J.M., "Tables for Constructing and for Computing the Operating Characteristics of Single-Sampling Plans," <u>Industrial Quality Control</u>, July, 1952, pp. 37-39.
- 15. Kao, John H.K., "The Beta Distribution in Reliability and Quality Control," Proceedings of the Seventh National Symposium on Reliability and Quality Control, 1961, pp. 496-511.
- 16. Grubbs, Frank E., "On Designing Single Sampling Inspection Plans,"
 The Annals of Mathematical Statistics, Vol. 20, 1949, pp. 242-256.

TABLE 1 - a

Table of Values for $(t/\rho) \times 100$ r = .50

p' (%)	Shape Parameter - β												
	1/3	1/2	2/3	1	1 1/3			2 1/2	3 1/3	4	5		
.010 .012 .015 .020			.001	.014 .017 .022 .028 .036	.152 .177 .220	·554 .632	1.32 1.47 1.69	2.91 3.13 3.42 3.81 4.20	7.04 7.44 7.95 8.63 9.27	10.9 11.5 12.1 13.0 13.8	17.0		
.030 .040 .050 .065 .080	6		.001 .001 .002 .003	.058 .072 .094	.299 .372 .441 .536 .623	.960 1.14 1.30 1.52 1.73	2.08 2.40 2.69 3.06 3.40	4.52 5.06 5.54 6.15 6.68	9.79 10.7 11.4 12.4 13.1	14.4 15.5 16.4 17.5 18.4	21.2 22.5 23.5 24.8 25.8		
.10 .12 .15 .20 .25		.001	.005 .007 .010 .015	.173	.742 .849 1.01 1.25 1.47	1.98 2.20 2.52 2.99 3.42	3.80 4.16 4.65 5.37 6.01	7.31 7.86 8.59 9.64	14.0 14.8 15.9 17.3 18.5	19.5 20.4 21.6 23.2 24.5	27.0 28.0 29.3 31.0 32.5		
.30 .40 .50 .65		.002 .003 .005 .009	.044	.433 .579 .723 .941 1.16	1.68 2.10 2.49 3.01 3.53	3.82 4.54 5.19 6.08 6.89	6.58 7.61 8.50 9.70 10.8	11.3 12.7 13.9 15.5 16.8	19.5 21.3 22.8 24.7 26.2	25.6 27.6 29.2 31.1 32.8	33.7 35.7 37.3 39.3 41.0		
1.0 1.2 1.5 2.0 2.5	.001 .001 .002	.021 .030 .048 .085	.175 .230 .322 .497 .698	1.45 1.74 2.18 2.91 3.65	4.18 4.78 5.66 7.04 8.35	7.88 8.80 10.1 12.0 13.7	12.0 13.2 14.8 17.1 19.1	18.4 19.8 21.6 24.3 26.6	28.1 29.7 31.7 34.6 37.0	34.7 36.3 38.4 41.3 43.7	42.9 44.5 46.5 49.3 51.6		
3.0 4.0 5.0 6.5 8.0	.008 .020 .041 .091	.193 .347 .548 .940 1.45	.921 1.43 2.01 3.02 4.17	4.39 5.89 7.40 9.70 12.0	9.61 12.0 14.1 17.4 20.4	15.3 18.3 21.0 24.7 28.1	21.0 24.3 27.2 31.1 34.7	28.6 32.2 35.3 39.3 42.9	39.2 42.8 45.8 49.7 53.0	45.8 49.3 52.1 55.8 58.9	53.5 56.8 59.4 62.7 65.5		
10 12 15 20 25	.351 .627 1.29 3.34 7.15	2.31 3.40 5.50 10.4 17.2	5.92 7.92 11.4 18.3 26.7	15.2 18.4 23.4 32.2 41.5	24.3 28.1 33.7 42.7 51.8	32.3 36.3 41.9 50.7 59.0	39.0 42.9 48.4 56.7 64.4	47.1 50.8 56.0 63.6 70.3	56.8 60.2 64.7 71.2 76.8	62.4 65.5 69.6 75.3 80.3	68.6 71.3 74.8 79.7 83.9		
30 40 50 55 30	13.6 40.0 100 347 1250	26.5 54.3 100 229 539	36.9 63.3 100 186 354	51.5 73.7 100 151 232	60.8 79.7 100 136 188	67.1 83.3 100 128 166	71.7 85.9 100 123 152	76.7 88.5 100 118 140	81.9 91.2 100 113 129	84.7 92.7 100 111 124	87.6 94.1 100 109 118		

TABLE 1 - b

	<i>Q.</i>		Ta	ore of A	alues fo	r (t/ρ)	x 100		r =	.90	
p' (%)		7 /0	- /		e Parame						
	1/3	1/2	2/3	1	1 1/3	1 2/3	2	2 1/2	3 1/	3 4	5
.010 .012 .015 .020		.001	.003 .004 .005 .008	.095 .114 .142 .190 .237	.621 .732 .911	1.71 1.96	3.38 3.77	6.18 6.65 7.27 8.15 8.92	12.4 13.1 14.0 15.3 16.3		25.8
.030 .040 .050 .065 .080		.001 .001 .002 .004 .006	.023	.285 .380 .475 .617 .759	1.23 1.53 1.80 2.20 2.57	2.99 3.53 4.03 4.72 5.35	5.34 6.16 6.89 7.85 8.71	9.59 10.8 11.8 13.1 14.2	17.2 18.8 20.1 21.7 23.1	23.1 24.8 26.2 28.0 29.5	31.0 32.8 34.3 36.1 37.7
.10 .12 .15 .20	.001	.009 .013 .020 .036 .056	.121 .170 .262	.949 1.14 1.42 1.90 2.37	3.04 3.49 4.12 5.12 6.04	6.12 6.82 7.80 9.27 10.6	9.74 10.7 11.9 13.8 15.4	15.5 16.7 18.3 20.5 22.4	24.7 26.1 27.9 30.5 32.6	31.2 32.7 34.5 37.1 39.2	39.4 40.9 42.7 45.3 47.3
.30 .40 .50 .65	.002 .006 .011 .024 .044	.081 .145 .226 .383 .581	.480 .743 1.04 1.54 2.04	2.85 3.81 4.76 6.19 7.62	6.93 8.62 10.2 12.4 14.5	11.8 14.1 16.1 18.8 21.3	16.9 19.5 21.8 24.9 27.6	24.1 27.1 29.5 32.9 35.7	34.4 37.5 40.1 43.4 46.2	41.1 44.2 46.7 49.9 52.5	49.1 52.0 54.4 57.3 59.8
1.0 1.2 1.5 2.0 2.5	.087 .150 .295 .705 1.39	.910 1.31 2.06 3.68 5.78	2.95 3.88 5.43 8.40 11.8	9.54 11.5 14.3 19.2 24.0	17.2 19.7 23.3 29.0 34.3	24.4 27.2 31.2 37.1 42.5	30.9 33.8 37.9 43.8 49.0	39.1 42.0 46.0 51.6 56.5	49.4 52.2 55.8 60.9 65.2	55.6 58.2 61.5 66.2 70.0	62.5 64.8 67.8 71.9 75.2
3.0 4.0 5.0 6.5 8.0	2.42 5.82 11.5 26.0 49.6	8.36 15.0 23.7 40.7 62.6	15.5 24.1 34.0 50.9 70.4	28.9 38.7 48.7 63.8 79.1	39.4 49.1 58.3 71.4 83.9	47.5 56.6 64.9 76.4 86.9	53.8 62.2 69.8 79.9 89.0	60.9 68.4 75.0 83.6 91.0	68.9 75.2 80.6 87.4 93.2	73.3 78.9 83.5 89.4 94.3	78.0 82.7 86.6 91.4
0 2 5 0 5	100 179 367 950 2030	100 147 238 449 746	100 134 192 308 451	100 121 154 212 273	100 116 138 176 213	100 112 130 157 183	100 110 124 146 165	100 108 119 135 149	100 106 114 125 135	100 105 111 121 129	100 104 109 116 122
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	3880	1150 2350 4330 9930	623 1,070 1,690 3,150 5,970	339 485 658 996 1,530	250 326 410 562 774	208 258 310 397 513	184 220 257 316 391	163 188 213 251 298	144 161 176 199 227	136 148 160 178 198	128 137 146 158 173

TABLE 1 - c

		<u> </u>			Tabl	e of T	Values:	for (t	/p)	x 100		r =	• .99	
p' ((%)	·					pe Parar							
		1/	3 1/	2 2	/3	1	1 1/		2/3	2	2 1	/2 3 1	/3 4	5
.0	010 012 015 020 025	.00	.0.	14 . 22 . 40 .	100 131 182 281 392	.99 1.19 1.49 1.99 2.49	3.6 4.2 5.3	6 8 0 9	.29 .02 .02 .50	9.98 10.9 12.2 14.1 15.8		8 25. 0 26. 6 28. 8 30.	1 31. 5 33. 3 34. 9 37.	6 39.1 1 41.1 9 43.1 6 45.6
.0	930 940 950 65 80	.00 .01 .02	2 .2½ 7 .41	58 .7 48 1.1 18 1.6	4	2.99 3.98 4.98 6.47 7.96	8.9 10.5 12.8	1 14. 16. 19.	5	17.3 20.0 22.3 25.4 28.2	24.5 27.5 30.1 33.4 36.3	38.6 40.4	0 44.° 7 47.° 0 50.°	7 52.5 2 54.9 4 57.8
.10	5	.09 .17 .33 .78 1.54	0 1.43 3 2.23	4.1 5.7 8.8	2 6 9	9.95 11.9 14.9 19.9 24.9	17.7 20.3 24.0 29.8 35.2	25. 27. 31. 38. 43.	9 9 0	31.5 34.6 38.6 44.6 49.9	39.7 42.7 46.7 52.4 57.3	52.9 56.5 61.6	58.8 5 62.2 5 66.8	63.0 65.4 68.4 72.4
.30 .40 .50 .65	5	2.66 6.35 12.4 27.3 51.0	8.91 15.9 24.8 42.1 63.8	16.3 25.2 35.2 52.2 71.4	ì	29.9 39.9 49.9 64.9	40.4 50.2 59.3 72.3 84.5	48. 57. 65. 77. 87.	6 9 1	54.6 63.2 70. 6 80.6 89.4	61.7 69.2 75.7 84.1 91.4	69.5 75.9	8 73.9 79.5 84.0	78.5 83.2 87.0 91.7
1.0 1.2 1.5 2.0 2.5		100 173 340 812 1600	100 144 226 404 635	100 132 184 285 400		1.00 120 150 201 252	100 115 136 169 200	100 112 128 174	3	100 110 123 142 159	100 108 118 132 145	100 106 113 123 132	100 105 111 119 126	100 104 109 115
3.0 4.0 5.0 6.5 8.0		2780 67 0 0	919 1,650 2,600 4,470 6,880	528 818 1,150 1,730 2,390		303 406 510 669 830	230 286 339 416 489	195 232 266 313 356	}	17 ⁴ 202 226 259 288	156 175 192 214 233	140 152 163 177 189	132 142 150 161 170	125 132 139 146 153
0 2 5 0 5				3,390 4,540 6,500	1,6		582 673 806 1,020 1,240	410 460 531 642 748		324 357 402 471 535	256 277 305 346 383	202 214 231 254 274	180 189 201 217 231	160 166 175 186 196
0 0 0 5 0					3,5 5,0 6,9	080 900	1,450 1,900 2,390 3,270 4,500	851 1060 1270 1630 2100			417 481 544 642 762	292 325 356 403 458	244 267 288 320 356	204 219 233 253 276

TABLE 2 - a

		1			Table	of Valu	es for	p'(%)	r	= .50		
(t	/p) x 100					Shape Par						
-		1/3	1/2	2/3	1	1 1/3	1 2/3	2	2 1/2	3 1/3	4	5
	.010 .012 .015 .020	3.17 3.36 3.62 3.97 4.27	.757 .846 .975	7 .168	8 .008 5 .010 7 .014	.001						
	.030 .040 .050 .065 .080	4.53 4.98 5.35 5.83 6.23	1.38 1.54 1.75	.310 .376 .436 .518	.028 .035 .045	.002 .003						
	.10 .12 .15 .20 .25	6.70 7.10 7.63 8.36 8.98	2.37 2.65 3.05	.691 -779 .904 1.09 1.27	.083	.007 .009 .012 .017	.001					
	.30 .40 .50 .65 .80	9.51 10.4 11.2 12.1 12.9	3.73 4.29 4.79 5.44 6.01	1.43 1.73 2.01 2.39 2.74	.202 .277 .347 .450 .554	.030 .044 .059 .084 .110	.004 .007 .010 .015	.001				
	1.0 1.2 1.5 2.0 2.5	13.9 14.7 15.7 17.2 18.3	6.70 7.31 8.14 9.34 10.4	3.17 3.57 4.13 4.98 5.75	.691 .819 1.03 1.38 1.72	.149 .190 .256 .376 .505	.032 .043 .063 .102	.007 .010 .016 .028 .043	.001			
	5.0	19.4 21.1 22.5 24.3 25.8	11.3 12.9 14.4 16.2 17.8	6.47 7.79 8.98 10.6 12.1	2.06 2.74 3.41 4.41 5.39	.644 .944 1.27 1.80 2.36	.207 .324 .469 .726 1.02	.062 .111 .173 .293 .443	.011 .022 .039 .075	.001 .003 .008	.001	
1	12 15 20	27.5 29.0 30.8 33.3 35.4	19.7 21.3 23.5 26.7 29.3	13.9 15.5 17.8 21.1 24.1	6.70 7.98 9.88 12.9 15.9	3.17 4.02 5.37 7.79 10.3	1.48 2.00 2.99 4.63 6.45	.691 .994 1.55 2. 7 4 4.24	.219 .346 .605 1.23 2.14	.032 .059 .124 .324 .680	.007 .015 .035 .111	.001 .006 .022
6	40 50 55 30	37.1 40.0 42.3 45.1 47.4 50.0	31.6 35.5 38.7 42.8 46.2 50.0	26.6 31.4 35.4 40.6 45.0 50.0	18.8 24.2 29.3 36.3 42.6 50.0	13.0 18.5 24.0 32.3 40.2 50.0	8.90 14.0 19.6 28.7 38.0 50.0	6.05 10.5 15.9 25.4 35.8 50.0	3.36 6.78 11.5 21.0 32.8 50.0	1.25 3.22 6.65 15.2 28.1 50.0	.560 1.76 4.24 11.6 24.7 50.0	.168 .698 2.14 7.73 20.3

TABLE 2 - b

	T			Table	of Valu	ies for	p' (%)	r	= .90		
(t/p) x 10					Shape Par	ameter .	- β				
	1/3	3 1/2	2/3	1	1 1/			2 1/	2 3 1/	3 4	
.010 .020 .030 .040 .050 .065	.49 .61 .70 .77 .83 .90	.4 .14 03 .18 03 .21 03 .23 09 .26	9 .036 2 .047 1 .057 6 .066 9 .079	.00	92 93 94 95 7						
.10 .12 .15 .20 .25	1.05 1.11 1.20 1.32 1.42	• 33 • 36 • 40 • 47 • 52	5 .119 8 .138 0 .167		3 .00	1 2 3					
.30 .40 .50 .65 .80	1.51 1.66 1.79 1.95 2.09	. 576 .661 .743 .846	.265 3 .308 -367	.032 .042 .053 .068	000	7 .001 9 .001 3 .002	l 2				
1.0 1.2 1.5 2.0 2.5	2.24 2.38 2.57 2.82 3.03	1.05 1.15 1.28 1.48 1.65	.488 .551 .638 .773 .897	.105 .126 .158 .211	.029 .039 .057	.005	6 .001 7 .001 9 .002 6 .004	• •			
3.0 4.0 5.0 6.5 8.0	3.22 3.54 3.81 4.15 4.44	1.81 2.09 2.33 2.65 2.94	1.01 1.22 1.42 1.69 1.94	.316 .420 .526 .683 .840	.098 .144 .194 .275 .363	.049	.009 .017 .026	.002 .003 .006	.001		
10 12 15 20 25	4.72 5.07 5.44 5.96 6.42	3.28 3.58 4.00 4.60 5.13	2.24 2.53 2.94 3.54 4.10	1.05 1.26 1.57 2.09 2.60	.488 .621 .837 1.22 1.65	.227 .307 .446 .718 1.04	.105 .151 .237 .421 .656	.023 .052 .092 .188 .329	.005 .009 .019 .049	.001 .002 .005 .017	• O(• O(
30 40 50 65 80	6.81 7.47 8.02 8.72 9.32	5.61 6.45 7.18 8.14 8.99	4.61 5.56 6.42 7.60 8.68	3.11 4.13 5.13 6.62 8.09	2.09 3.06 4.10 5.76 7.53	1.40 2.26 3.26 5.01 7.01	.944 1.67 2.60 4.35 6.52	.518 1.06 1.84 3.53 5.85	.190 .496 1.04 2.47 4.88	.085 .270 .657 1.86 4.22	.02 .10 .32 1.21 3.39
120 150	10.0 10.6 11.4 12.4	10.0 10.9 12.1 13.8	10.0 11.2 12.9 15.4	10.0 11.9 14.6 19.0	10.0 12.6 16.6 23.3	10.0 13.3 18.7 28.4	10.0 14.1 21.1 34.4	10.0 15.3 25.2 44.9	10.0 17.6 33.4 65.4	10.0 19.6 41.3 81.5	10.0 23.1 55.1

TABLE 2 - c

Table of Values for p' (%) r = .99 $(t/p) \times 100$ Shape Parameter - B 1/3 1/2 2/3 1 1/3 1 2/3 2 1/2 3 1/3 4 5 .010 .047 .010 .002 .020 .059 .014 .003 .040 .074 .020 .005 .080 .093 .028 .009 .10 .101 .032 .010 .001 .20 .045 .127 .016 .002 .40 .064 .159 .025 .004 .001 .80 .201 .090 .040 .008 .002 1.0 .216 .101 .047 .010 .002 1.2 .230 .110 .053 .012 .003 1.5 .248 .123 .061 .015 .004 .001 2.0 .273 .142 .074 .020 .005 .001 2.5 .294 .159 .086 .025 .007 .002 3.0 .312 .174 .097 .030 .009 .003 .001 . 344 4.0 .201 .118 .040 .014 .005 .002 5.0 .370 .225 .136 .050 .019 .007 .003 6.5 .404 .256 .163 .065 .026 .010 .004 .001 8.0 .433 .284 .187 .080 .035 .015 .006 .002 10 .465 .318 .217 .101 .047 .022 .010 .003 12 .495 .347 .245 .121 .060 .029 .014 .001 15 · 533 · 586 .388 .005 .285 .151 .080 .043 .023 .009 20 .002 . 001 .448 . 344 .201 .118 .069 .040 .018 25 .631 .005 .002 .502 .399 .251 .158 .100 .063 .031 .010 .004 .001 30 .671 .548 .449 .302 .202 40 .135 .090 .049 .018 .738 .634 .008 .545 .002 .401 .296 .218 .161 50 .101 .047 .026 .795 .709 .632 .010 .502 . 399 .316 .251 65 .177 .099 .867 .063 .807 .752 .031 .651 .565 .489 .424 8ó . 342 .929 .239 .179 .895 .863 .801 .117 .744 .691 .641 .574 .476 .411 . 329 100 1.00 1.00 1.00 . 1.00 1.00 1.00 1.00 1.00 1.00 120 1.06 1.00 1.10 1.00 1.13 1.20 1.27 1.35 1.44 1.57 2.73 1.83 150 2.06 1.14 1.22 2.47 1.31 1.50 1.71 1.96 2.24 3.81 200 4.96 1.26 1.58 1.41 7.35 2.00 2.50 3.14 5.53 9.45 3.94 9.57 14.9 250 1.36 1.58 27.5 1.83 2.48 3.35 4.52 6.09 19.2 32.5 62.5 300 1.44 1.73 2.07 2.97 4.26 6.08 14.5 8.65 400 32.4 1.58 55.6 1.99 3.94 4.90 91.3 2.50 6.18 9.63 14.9 27.5 64.0 92.4 500 1.70 2.22 2.90 8.23 13.7 22.2 43.0 88.3 650 1.86 2.53 3.44 6.32 11.5 20.4 34.6 66.1 800 2.80 1.99 3.94 7.73 14.9 27.5 47.4 83.8

1000

1500

2.14

2.45

3.13

3.82

4.56

5.93

9.56

14.0

19.5

31.1

37.3

60.0

63.4

89.6

Table 3al Sampling Plans for $\beta=1/3$, ${\bf r}=.50$

							n						
С			(t/ρ)	x 100	Ratio	for wh	ich P(A) = .	10 (or	less)			
	100	50	25	10	5.0	2.5	1.0	.50	.25	.10	.05	.025	.01.0
0	4	5	6	8	10	12	16	20	25	34	42	 53	72
1	7 (.05)	8 (.03)	10 (.01)	13 (.01)	16	20	27	34	42	57	72	90	122
2	9 (•32)		14 (.08)	18 (.03)	(.02)	28 (.Ol)	37	46	58	78	98	123	1 68
3	12 (.66)	14 (.38)	17 (.21)	23 (.08)	28 (.04)	35 (.02)	47 (.01)	58	7 3	98	123	156	211
	14 (1.4)	17 (.68)	21 (.34)	27 (.14)	34 (.07)	42 (.03)	56 (.01)	70 (.01)	87	118	148	187	252
5	17 (1.8)	20 (1.0)	24 (.55)	32 (.21)	39 (.11)	49 (.05)	65 (.02)	81 (.01)	102	137	173	217	29 3
6	19 (2.7)		28 (.70)	36 (.29)	45 (.14)	56 (.07)	74 (.03)	92 (.01)	115 (.01)	157	197	247	332
7	21 (3.5)	26 (1.7)	31 (.90)	41 (.36)	50 (.19)	62	82	102	129	176 (.01)	220	276	371
8	24	28	34	45 (.47)	56	69	97	713	1/13		243	304	410
	2 6 (4.9)	31 (2.7)	38 (1.3)	49 (.50)	61 (.25)	75 (.13)	100	124 (.03)	158 (.01)	212	266	333	448
1.0	30 (4.9)	35 (2.7)	43 (1.3)	56 (. 5 0)	68 (.25)	84	(.05)	138 (.03)	172 (.01)	230	2 88	361	486

 (t/ρ) x 100 ratios in parentheses are for P(A) = .95 (or more)

Table 3a2 Sampling Plans for $\beta=1/2$, r=.50

•							n						
c			(t/ρ)	x 100	Ratio	for w	hich P	(A) =	.10 (0	r less	 s)		
×	100	50	25	10	5.0	2.5	1.0	.50	.25	.10	.050	.025	.010
. 0	(.03)	5 (.02)	7 (.01)	11	15	21	34	47	67	105	150	212	33 ¹ 4
	7 (.62)	9 (.37)		19 (.07)	26 (.04)	36 (.02)	57 (.01)	80	113	180	253	357	563
	9 (2.2)	12 (1.1)		26 (.22)		50 (.06)	78 (.02)	110	156	245	346	488	770
3	12 (3.6)	16 (1.9)	21 (1.0)	32 (.42)	45 (.21)	63 (.10)	98 (.04)	139 (.02)	196 (.01)	308	434	613	967
٠.			26 (1.4)	39 (•59)	54 (.30)	75 (.15)	118	167 (.03)	234 (.01)	36 8	519	733	1160
5	(6.9)	22 (3.7)	30 (1.9)	45 (.79)	63 (•39)	87 (.20)	137 (.08)	194 (.04)	272 (.02)	427 (.01)	602	851	1340
6	19 (9.1)	25 (4.7)	34 (2.3)	51 (1.0)	71 (.49)	99 (•25)	157 (.09)	220 (.05)	309 (.02)	485 (.01)	684	966	1530
		28 (5.6)	38 (2.8)	58 (1.1)	80 (.56)	111 (.29)	176 (.11)	246 (.05)	345 (.03)	542 (.01)	764	1080	1700
	24 (12)		(3.2)		(.65)	(.33)	(.12)	(.06)		(.01)		1190	1880
9	26 (13)	34 (7.3)	46 (3.6)	70 (1.4)	96 (•73)	134 (.37)	212 (.14)	297 (.07)	417 (.03)	655 (.01)	923	1300	2060
10	30 (13)	38 (7•3)	51 (3.6)	77 (1.4)	107	148 (.37)	230 (.15)	322 (.08)	452 (.04)	711 (.01)	1000	1410	2230

 (t/ρ) x 100 ratios in parentheses are for P(A) = .95 (or more)

							n						
С			(t/p) x 10	00 Rati	o for	which	P(A) =	= .10 (or les	ss)		
·	100	50	25	10	5.0	2.5	1.0	.50	.25	.10	.05	.025	.010
0	1 .	6 (.13)	9 (.07)	16 (.03)	25 (.02)	39 (.01)	72	114	182	334	529	838	1,550
1	(2.2)	10 (1.2)	15 (.68)	27 (.27)	42 (.13)	66 (.07)	122 (.03)	194 (.01)	307 (.01)	563	893	1,420	2,610
2	9 (5.6)	14 (2.7)	21 (1.5)	37	58 (.30)	Q1	168	265	1,20	7771	1,220	1,940	3,580
3		17 (4.5)	26 (2.3)	47 (.93)	73 (.47)	115 (.2 3)	211	333 (.04)	526 (.02)	967 (.01)	1,530	2,430	4,490
4	14 (11)	21	31	56	87	137	252	208	620		1,840	2,910	5,370
5	(13)	24	37	65	102	162	503	1,60	721		0 100	3,380	6,230
6	19 (16)	28	42	74	115	184	333	524	820		0 1100	3,830	7,070
	21 (19)	31	47	82	129	205	370	586	007		0 500	4,280	7,900
	24 (20)	34	52	91	143	226	410	6117	1 020		0.000	4,730	8,720
	26 (21)	38 (10)	57 (5.4)	100	159	248	448	707	1 720		2 060	5,170 (.01)	9,540
	30 (22)	44	64	111	172	268	487	767	1 220	2,230	2 510	E 610	

 (t/ρ) x 100 ratios in parentheses are for P(A) = .95 (or more)

Table 3a4 Sampling Plans for β = 1, r = .50

							n		·* radiciti , providen <mark>gapopospo</mark> n				
С			(t/p) x 10	0 Rati	o for	which	P(A) =	.10 (or les	s)		
	100	50	25	15	10	5.0	2.5	1.5	1.0	.50	.25	.15	.10
0		7 (1.0)	14 (.53)	23 (.33)	34 (.22)	67 (.11)	133 (.06)	224	334	664 (.01)	1,330	2,210	3,340
1	,	12 (4.4)	23 (2.3)	38 (1.3)	57 (.90)	113 (.45)	226 (.22)	378 (.13)	563 (.09)	1120	2250 (.02)	3740 (.01)	5640 (.01)
2	9 (14)	17 (7.3)	32 (3.7)	53 (2.3)	78 (1.5)	156 (.75)	309 (.38)	517 (.23)	770 (.15)	1530 (.07)	3080 (.04)	5120 (.02)	7710
3	12 (18)	21 (10)	40 (5.1)	66 (3.0)	98 (2.0)	196 (1.0)	388 (.51)	649 (.3 6)	967 (.20)	1930 (.10)	3860 (.05)	6420 (.03)	9680
4	14 (23)	26 (12)	49 (6.0)	79 (3.7)	118 (2.4)	234 (1.2)	465 (.61)	776 (.36)	1160 (.24)	2300	4620 (.06)	7690 (.04)	
	17 (26)	30 (13)	56 (6.9)	92 (4.1)	137 (2.8)	272 (1.4)	539 (.70)	900 (.42)	1340 (.28)	2670 (.14)	5360 (. 0 7)		
6	19 (30)	3 ⁴ (15)	64 (7.6)	105 (4.6)		309 (1.5)	612 (.77)	1020 (.46)	1530 (.31)	3040 (.15)	6090 (.08)		
7	(33)	38 (16)	72 (8.3)	117 (5.0)	176 (3.2)		684 (.84)	1140 (.50)	1700 (.34)	3390 (.17)	6800 (.08)	,	
8	24 (34)	42 (18)	79 (8 . 9)	129 (5.3)	194 (3.5)	381 (1.8)	755 (.90)	1260 (.54)	1880 (.36)	3740 (.18)	7510 (.09)		
9	26 (35)	46 (18)		142 (5.6)	213 (3.7)	417 (1.9)	827 (.94)	1,380 (.57)	2,060 (.38)	4,100 (.19)	8,210		
10	30 (36)	53 (18)	97 (9.7)	156 (5.7)	230 (3.9)	452 (1.9)	896 (.98)	1,500 (.59)	2,230 (.39)	4,440 (.20)	8,910 (.10)		

Table 3a5 Sampling Plans for $\beta=1$ 1/3, r=.50

į	ļ						n				11 - 200 - 1 - 20	****	*
0	: 		(t/p) x 10	O Rati	o for	which	P(A) =	.10 (or les	ss)		· · - · !
_	100	50	40	25	15	10	8.0	5.0	4.0	2.5	1.5	1.0	.50
C		9 (2.7)	(5.5)	22 (1.4)	(°89) 7÷5	72 (.57)	97 (.46)	181 (.28)	242 (.23)	452 (.14)	900 (208)	1540 (.06)	381:0 (.03)
1	(15)	15 (8.0)	20	37	71	122	165	306	ina	762	1.500		(1.00
2	(24)	21 (12)	27 (9.8)	50 (6,0)	98 (3.6)	168 (2.4)	226	419 (1.2)	560 (1.0)	1050	2 0 80	(•24)	8870
3	12 (29)	26 (15)	35 (12)	63	123	211	283		703	133.0	2610 (.45)	4460	
4	14 (34)	32 (17)	42 (13)	76	147	252	339	629	841	1570	3120 (.52)	5220	er er og er er er
5	17 (36)	37 (19)	48 (15)	88 (9 .5)	173	293	393	730	976	1820		6180	
6	19 (41)	(20) 42	55 (16)	100 (10)	196	332	446	829	1110	2070	4110	7020	
7	(44)	47- (21)	61 (17)	112	219	371	499	927	1240	2310	4600	7850 (.45)	
8	24 (45)	52 (23)	68 (18)	124 (11)	242	410	550	1020	1.370	2550		8660	. man
9	(46)	57 (24)	74 (19)	135 (12)	265	448	602	1120	1500	2790		01/70	,
10	29 (46)	63 (24)	82 (19)	150 (12)	287	486	653	1210	1620	3020 (1.2)	6020	. ,	

Table 3a6 Sampling Plans for $\beta = 1.2/3$, r = .50

.,.,.,							n				······································		
c			(t/	p) x l	00 Rat	io for	which	P(A)	= .10	or les	s		
	100	80	50	40	25	15	10	8.0	5.0	4.0	2.5	1.5	1.0
0	5	5 (7.9)	11 (4.9)	16 (3•9)	35 (2.4)	76 (1.5)	156 (1.0)	224 (.81)	480 (.51)	698 (.41)	1540 (.25)	3600 (.15)	7090
- 1	7 (21)	9 (18)	19 (11)	27	59	129	263	378	810	1180	2590 (.60)	6080	
2	9 (31)	13 (24)	(16)	37 (12)	81 (7.8)	178 (4.8)	360 (3.2)	517 (2.6)	1110 (1.6)	1610 (1.3)	3550 (.81)	8320 (.49)	
3	12 (36)	16 (30)	33 (18)	46 (15)	102 (9.3)		451 (3.8)	650 (3.0)	1390 (1.9)	2030 (1.5)	4460 (•97)		
14	14 (42)	19 (3 ⁴)	39 (21)	55 (17)	122	267 (6.4)	540 (4.2)		1670 (2.1)		5330 (1.1)		
5	17 (44)	22 (37)	45 (23)	64 (18)	142 (11)	310 (7.0)		900 (3.7)	1930 (2.3)	2810 (1.8)	6180 (1.1)		
	19 (48)	26 (38)	52 (24)	73 (19)	163 (12)	352 (7.4)		1.020 (3,9)	2200 (2.5)		7020 (1.2)		
7	21 (51)	29 (40)	58 (25)	82 (20)	(12) 182	394 (7.8)	795 (5.1)	1140 (4.1)	2450 (2.6)	3570 (2.1)	7850 (1.3)		
8	24 (52)	32 (42)	65 (26)	90 (21)	201 (13)	434 (8.2)	878 (5.3)	1260 (4.3)	2710 (2.7)	3940 (2.1)	8660 (1.3)		
9	26 (53)	35 (44)	70 (27)	99 (22)	220 (13)	475	960	1380	2960 (2.8)	4310	9470		
	29 (54)	39 (44)	78 (27)	110 (22)	239 (14)		1040 (5.7)		3210 (2.9)		33		

Table 3a7 Sampling Plans for β = 2, r = .50

							n						
С	,100	ı.	(t/	o) x 10	OO Rat	io for	which	P(A) :	= .10	or les	ss)		
	100	80	50	40	25	15	10	8.0	5.0	4.0	3.0	2.5	2.0
0	4 (13)	6 (11)	14 (7.2)	21 (5.9)	54 (3.6)	147 (2.2)	33 ¹ 4 (1.5)	520 (1.2)	1330 (.74)	2080 (.60)	3710 (.45)	5360 (•37)	8220 (.28)
1	7 (28)	10 (23)	23 (15)	36 (12)	91 (7.5)	251 (4.5)	563 (3.0)	878 (2.4)	2250 (1.5)	3500 (1.2)	6280 (.90)	9050 (•75)	
2	9 (38)	14 (30)	32 (19)	49 (15)	124 (9.8)	343 (5.8)	770 (4.1)	1200	3080 (1.9)	4800 (1.5)	8590 (1.1)		
3	12 (43)	17 (35)	40 (22)	62 (18)	158 (11)	431 (6.7)	967 (4.5)			6020 (1.8)			
4		(38)	49 (24)	74 (20)	189 (13)	516 (7.4)	1160 (5.0)		4620 (2.4)	7200 (1.9)			
5		24 (41)	56 (26)	86 (21)	219 (13)	598 (7.9)	1340 (5.3)			8360 (2.1)			
6		27 (44)	64 (27)	98 (22)	248 (14)	679 (8.4)	1520 (5.5)		6090 (2.7)				
7		31 (45)	72 (28)	110 (23)	278 (14)	759 (8.7)	1700 (5.8)	2660 (4.6)	6800 (2.8)				
8		34 (47)	79 (30)	121 (24)	306 (15)	838 (9.0)	1880 (6.0)	2930 (4.8)					
9		37 (47)	87 (31)	132 (25)	335 (15)	917 (9.2)	2,060 (6.1)	3,210 (4.9)	8,210 (3.0)				
10	30 (58)	43 (47)	97 (31)	147 (25)	363 (16)		2230 (6.3)						

Table 3a8 Sampling Plans for $\beta = 2 1/2$, r = .50

•					* 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		n						
C			(t/	/ρ) x	100 R	atio fo		ch P(A) = .10) (or	less)		with the second
	100	80	65	50	40	30	25	20	15	12	10	8.0	5.0
0	1	6 (17)	10 (14)	19 (10)	33 (8.6	68) (6.5)	107	187	378	662	1000	1840 (1.7)	which a six all alleges a
1		11 (29)	17	- 33	56 (15)	115 (11)	182	316	638	1120	1690	3110 (3.0)	0080
2	9	15 (27)	24	45	77 (18)	158 (14)	249 (11)	433	872	1530		4260	(1.9)
3	1 .	19 (41)	30 (34)	56 (26)	97 (20)	199 (15)	312 (13)	543 (10)	1100	1920		5350	
1,	14 (56)	23 (44)	36 (37)	68 (28)	116 (22)	238 (17)	374 (14)	650 (11)	1310	2300		6400	
5	17 (58)	26 (48)	42 (38)	79 (29)	135 (23)	276 (18)	433 (15)	754 (12)	1520	2670		7420	#
6		30 (50)	48 (40)	89 (31)	155 (24)	313 (18)	492 (15)	856 (12)	1730	3030	4580 (6.3)	8430	
7	21	34 (51)	54	100	174	350 (19)	550 (16)	957 (12)	1930 (9.7)	3380		9420	
8	24	37 (52)	60	110	192	387 (19)	607 (16)	1060	2130	3730 (7.9)	5650	(2.1)	The second secon
9	26	41 (53)	65	121	210	423	664 (16)		2330		6180		
	29	46 (53)	72	134	227	459	720	1250	2530		6670		

Table 3b! Sampling Plans for $\beta = 1/3$, r = .90

						n						
	·	(t/p) x 10	00 Rati	lo for	which	P(A) :	= .10	(or les	s)		
100	50	25	10	5.0	2.5	1.0	.50	.25	.10	.050	.025	.010
55	28	35	48	60	76	1.04	129	163	220	277	3/18	470
38 (.08)	48 (.03)	60 (.02)	82 (.01)	101	129	174	217	274	370		_	•
52 (.35)	65 (.18)	82 (.08)	112	139 (.02)	176 (.01)	237	297	375	507	639	804	1,090
65	82	103	747	175	220	000	373	470	636	802	1,010	1,360
78 (1.4)	98	123	169	210	261	257	1.1.6	563	761	960	1,210	1,630
91	114	143	196	2/13	206	1, 1, 1,	E1 0	653	883	1,110	1,400	1,890
103	130	164	223	276	2117	170	E90	(T). 7	1,000	1,260	1,590	2,150
115	145	184	250	300	280	506	600	900		1410	1780	5400
127	162	202	275	371	420	580	706	01.5		1,560	1,960	2,650
139	177	221	301	373	460	6211	701	000	1,350	1,710	2,150	2,900
150	193	240	327	405	500	688	967	1000	1470	1850	2330	3150
	100 22 38 (.08) 52 (.35) 65 (.84) 78 (1.4) 91 (2.2) 103 (2.9) 115 (3.8) 127 (4.7) 139 (5.5) 150	100 50 22 28 38 48 (.08) (.03) 52 65 (.35) (.18) 65 82 (.84) (.41) 78 98 (1.4) (.73) 91 114 (2.2) (1.1) 103 130 (2.9) (1.4) 115 145 (3.8) (1.9) 127 162 (4.7) (2.1) 139 177 (5.5) (2.5) 150 193	22 28 35 38 48 60 (.08) (.03) (.02) 52 65 82 (.35) (.18) (.08) 65 82 103 (.84) (.41) (.21) 78 98 123 (1.4) (.73) (.37) 91 114 143 (2.2) (1.1) (.54) 103 130 164 (2.9) (1.4) (.71) 115 145 184 (3.8) (1.9) (.89) 127 162 202 (4.7) (2.1) (1.0) 139 177 221 (5.5) (2.5) (1.2) 150 193 240	100 50 25 10 22 28 35 48 38 48 60 82 (.08) (.03) (.02) (.01) 52 65 82 112 (.35) (.18) (.08) (.03) 65 82 103 141 (.84) (.41) (.21) (.08) 78 98 123 169 (1.4) (.73) (.37) (.14) 91 114 143 196 (2.2) (1.1) (.54) (.20) 103 130 164 223 (2.9) (1.4) (.71) (.27) 115 145 184 250 (3.8) (1.9) (.89) (.35) 127 162 202 275 (4.7) (2.1) (1.0) (.43) 139 177 221 301 (5.5) (2.5) (1.2) (.51) 150 193 240 327	100 50 25 10 5.0 22 28 35 48 60 38 48 60 82 101 (.08) (.03) (.02) (.01) 52 65 82 112 139 (.35) (.18) (.08) (.03) (.02) 65 82 103 141 175 (.84) (.41) (.21) (.08) (.04) 78 98 123 169 210 (1.4) (.73) (.37) (.14) (.07) 91 114 143 196 243 (2.2) (1.1) (.54) (.20) (.10) 103 130 164 223 276 (2.9) (1.4) (.71) (.27) (.14) 115 145 184 250 309 (3.8) (1.9) (.89) (.35) (.18) 127 162 202 275 341 (4.7) (2.1) (1.0) (.43) (.22) 139 177 221 301 373 (5.5) (2.5) (1.2) (.51) (.26)	22 28 35 48 60 76 38 48 60 82 101 129 (.08) (.03) (.02) (.01) 52 65 82 112 139 176 (.35) (.18) (.08) (.03) (.02) (.01) 65 82 103 141 175 220 (.84) (.41) (.21) (.08) (.04) (.02) 78 98 123 169 210 264 (1.4) (.73) (.37) (.14) (.07) (.03) 91 114 143 196 243 306 (2.2) (1.1) (.54) (.20) (.10) (.05) 103 130 164 223 276 347 (2.9) (1.4) (.71) (.27) (.14) (.07) 115 145 184 250 309 389 (3.8) (1.9) (.89) (.35) (.18) (.09) 127 162 202 275 341 429 (4.7) (2.1) (1.0) (.43) (.22) (.11) 139 177 221 301 373 469 (5.5) (2.5) (1.2) (.51) (.26) (.13) 150 193 240 327 405 500	(t/ρ) x 100 Ratio for which 100 50 25 10 5.0 2.5 1.0 22 28 35 48 60 76 1.04 38 48 60 82 101 129 174 (.08) (.03) (.02) (.01) 52 65 82 112 139 176 237 (.35) (.18) (.08) (.03) (.02) (.01) 65 82 103 141 175 220 298 (.84) (.41) (.21) (.08) (.04) (.02) (.01) 78 98 123 169 210 264 357 (1.4) (.73) (.37) (.14) (.07) (.03) (.01) 91 114 143 196 243 306 414 (2.2) (1.1) (.54) (.20) (.10) (.05) (.02) 103 130 164 223 276 347 470 (2.9) (1.4) (.71) (.27) (.14) (.07) (.03) 115 145 184 250 309 389 526 (3.8) (1.9) (.89) (.35) (.18) (.09) (.03) 127 162 202 275 341 429 580 (4.7) (2.1) (1.0) (.43) (.22) (.11) (.04) 139 177 221 301 373 469 634 (5.5) (2.5) (1.2) (.51) (.26) (.13) (.05)	(t/\rho) x 100 Ratio for which P(A) 100 50 25 10 5.0 2.5 1.0 .50 22 28 35 48 60 76 1.04 129 38 48 60 82 101 129 174 217 52 65 82 112 139 176 237 297 (.35) (.18) (.08) (.03) (.02) (.01) 65 82 103 141 175 220 298 373 (.84) (.41) (.21) (.08) (.04) (.02) (.01) 78 98 123 169 210 264 357 446 (1.4) (.73) (.37) (.14) (.07) (.03) (.01) (.01) 91 114 143 196 243 306 414 518 (2.2) (1.1) (.54) (.20) (.10) (.05) (.02) (.01) 103 130 164 223 276 347 470 588 (2.9) (1.4) (.71) (.27) (.14) (.07) (.03) (.01) 115 145 184 250 309 389 526 658 (3.8) (1.9) (.89) (.35) (.18) (.09) (.03) (.02) 127 162 202 275 341 429 580 726 (4.7) (2.1) (1.0) (.43) (.22) (.11) (.04) (.02) 139 177 221 301 373 469 634 794 (.02) 150 193 240 327 405 500 688 961	(t/ρ) x 100 Ratio for which P(A) = .10 100 50 25 10 5.0 2.5 1.0 .50 .25 22 28 35 48 60 76 1.04 1.29 163 38 48 60 82 101 1.29 174 217 274 (.08) (.03) (.02) (.01) 52 65 82 112 139 176 237 297 375 (.35) (.18) (.08) (.03) (.02) (.01) 65 82 103 141 175 220 298 373 470 (.84) (.41) (.21) (.08) (.04) (.02) (.01) 78 98 123 169 210 264 357 446 563 (1.4) (.73) (.37) (.14) (.07) (.03) (.01) (.01) 91 114 143 196 243 306 414 518 653 (2.2) (1.1) (.54) (.20) (.10) (.05) (.02) (.01) 103 130 164 223 276 347 470 588 741 (2.9) (1.4) (.71) (.27) (.14) (.07) (.03) (.01) (.01) 115 145 184 250 309 389 526 658 829 (3.8) (1.9) (.89) (.35) (.18) (.09) (.03) (.02) (.01) 127 162 202 275 341 429 580 726 915 (4.7) (2.1) (1.0) (.43) (.22) (.11) (.04) (.02) (.01) 139 177 221 301 373 469 634 794 1,000 (5.5) (2.5) (1.2) (.51) (.26) (.13) (.05) (.03) (.01)	$ (t/\rho) \times 100 \text{ Ratio for which } P(A) = .10 \text{ (or less } 100 50 25 10 5.0 2.5 1.0 .50 .25 .10 $ $ 22 28 35 48 60 76 1.04 129 163 220 $ $ 38 48 60 82 101 129 174 217 274 370 $ $ (.08) (.03) (.02) (.01) $ $ 52 65 82 112 139 176 237 297 375 507 $ $ (.35) (.18) (.08) (.03) (.02) (.01) $ $ 65 82 103 141 175 220 298 373 470 636 $ $ (.84) (.41) (.21) (.08) (.04) (.02) (.01) $ $ 78 98 123 169 210 264 357 446 563 761 $ $ (1.4) (.73) (.37) (.14) (.07) (.03) (.01) (.01) $ $ 91 114 143 196 243 306 414 518 653 883 $ $ (2.2) (1.1) (.54) (.20) (.10) (.05) (.02) (.01) $ $ (2.9) (1.4) (.71) (.27) (.14) (.07) (.03) (.01) (.01) $ $ 115 145 184 250 309 389 526 658 829 1120 $ $ (3.8) (1.9) (.89) (.35) (.18) (.09) (.03) (.02) (.01) $ $ 127 162 202 275 341 429 580 726 915 1,240 $ $ (4.7) (2.1) (1.0) (.43) (.22) (.11) (.04) (.02) (.01) $ $ 139 177 221 301 373 469 634 794 1,000 1,350 $ $ (5.5) (2.5) (1.2) (.51) (.26) (.13) (.05) (.03) (.01) $	(t/ρ) x 100 Ratio for which P(A) = .10 (or less) 100 50 25 10 5.0 2.5 1.0 .50 .25 .10 .050 22 28 35 48 60 76 1.04 1.29 163 220 277 38 48 60 82 1.01 1.29 1.74 2.17 2.74 3.70 467 (.08) (.03) (.02) (.01) 52 65 82 1.12 1.39 1.76 2.37 2.97 3.75 5.07 6.39 (.35) (.18) (.08) (.03) (.02) (.01) 65 82 1.03 1.41 1.75 2.20 2.98 3.73 4.70 6.36 8.02 (.84) (.41) (.21) (.08) (.04) (.02) (.01) 78 98 1.23 1.69 2.10 2.64 3.57 4.46 5.63 7.61 9.60 (1.4) (.73) (.37) (.14) (.07) (.03) (.01) (.01) 91 1.14 1.43 1.96 2.43 3.06 4.14 5.18 6.53 883 1,110 (2.2) (1.1) (.54) (.20) (.10) (.05) (.02) (.01) 103 1.30 1.64 2.23 2.76 3.47 4.70 5.88 7.41 1,000 1,260 (2.9) (1.4) (.71) (.27) (.14) (.07) (.03) (.01) (.01) 115 1.45 1.84 2.50 3.09 3.89 5.26 6.58 8.29 11.20 1.410 (3.8) (1.9) (.89) (.35) (.18) (.09) (.03) (.02) (.01) 127 1.62 2.02 2.75 3.41 4.29 5.80 7.26 9.15 1,240 1,560 (4.7) (2.1) (1.0) (.43) (.22) (.11) (.04) (.02) (.01) 150 1.93 2.40 3.27 4.05 5.00 6.88 9.61 1.000 1.350 1,710	(t/\rho) x 100 Ratio for which P(A) = .10 (or less) 100 50 25 10 5.0 2.5 1.0 .50 .25 .10 .050 .025 22 28 35 48 60 76 1.04 129 163 220 277 348 38 48 60 82 101 129 174 217 274 370 467 587 (.08) (.03) (.02) (.01) 52 65 82 112 139 176 237 297 375 507 639 804 (.35) (.18) (.08) (.03) (.02) (.01) 65 82 103 141 175 220 298 373 470 636 802 1,010 65 82 103 141 175 220 298 373 470 636 802 1,010 78 98 123 169 210 264 357 446 563 761 960 1,210 78 98 123 169 210 264 357 446 563 761 960 1,210 91 114 143 196 243 306 414 518 653 883 1,110 1,400 (2.2) (1.1) (.54) (.20) (.10) (.05) (.02) (.01) 103 130 164 223 276 347 470 588 741 1,000 1,260 1,590 (2.9) (1.4) (.71) (.27) (.14) (.07) (.03) (.01) (.01) 115 145 184 250 309 389 526 658 829 1120 1410 1780 (3.8) (1.9) (.89) (.35) (.18) (.09) (.03) (.02) (.01) 127 162 202 275 341 429 580 726 915 1,240 1,560 1,960 (4.7) (2.1) (1.0) (.43) (.22) (.11) (.04) (.02) (.01) 139 177 221 301 373 469 634 794 1,000 1,350 1,710 2,150 150 193 240 327 405 500 688 841 1000 1450 1450 1650

Table 3b2 Sampling Plans for $\beta = 1/2$, r = .90

							n						
: (3		(t/ρ)	x 100	Ratio	for	which I	P(A) ==	.10 (or les	s)	.	
i i	100	50	25	10	5.0	2.5	1.0	.50	.25	.10	.050	.025	.010
((.05)	31 (.02)	45 (.01)	69	98	138	219	307	435	687			2190
1	38 (.80)	53 (.40)	75 (•20)	117	167 (.04)	236 (.02)	370 (.01)	519	734	1160	1660	2360	3710
2	52	73 (1.2)	102	162	228	323	507	710	1000	1590	2270	3230	5070
3	(3.9)	92 (2.0)	129 (1.0)	204 (.40)	287 (.20)	405 (.10)	636 (.04)	891 (.02)	1260 (.01)	1990	2840	4050	6360
		(3.0)	156 (1.4)	244 (•59)	343 (.30)	484 (.15)	761 (.06)	1070	1510	2390	3400	4850	7 610
	(8.0)	127 (4.0)	(1.9)	(.,0)	(.30)	(•19)	(.00)	(.04)	(.02)	(.01)	3950		8830
İ	103 (9.6)	(4.8)	205 (2.3)	321 (•94)	452 (.47)	638 (.24)	1000	1400 (.04)	1990 (.02)	3140	4480	6380	
	115 (11)	164 (5.4)	229 (2.8)	359 (1.1)	505 (•55)	713 (.28)	1120	1570 (.06)	2220	3510 (.01)	5010	7130	
8	127 (13)	181 (6.2)	253 (3.1)	396 (1.3)	558 (.63)	787 (.32)	1240 (.13)	1730 (.06)	2450 (.03)	3880	5530 °	7870	
	139 (15)	198 (6.9)	277 (3.4)	433 (1.4)	610 (.71)	861 (•35)	1350 (.14)	1900 (.07)	2680 (.04)	4240 (.01)	6050 8		
10	154 (15)	215 (7.6)	300	470	661	037	1470	2060	0010	1,600	1000	9340	

Table 3b3 Sampling Plans for $\beta = 2/3 \ r = .90$

1	a normal services of the						the mount were as as		W1 W1 4				
				-		a continue a supplication in the	n					THE RESIDENCE OF THE PARTY OF	₩
c		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	(t/p) x 10	O Rati	o for	which	P(A) =	= .10 (or les	(as	Market San. St No. of Associations of	Minor II Rebit Senior .
-	200	100	50	25	15	10	5.0	2.5	1.0	.50	.25	.10	.05
C		22 (•33)	35 (.16)	55 (.08)	78 (.05)	102 (.03)	162 (.02)	259 (.01)	470	743	1180	2170	3440
1	24	38	59	94	131 (.41)	137.3	27/1	1127	701	1260 (.01)	2000	3670	5810
2	33 (11)	52 (5.9)	82	128	181 (.87)	237	375	508	1000	1700	0720	5020	7940
3	(18)	65 (8.8)	103 (4.6)	163 (2.2)	227 (1.4)	297 (.90)	471 (.46)	751 (.22)	1360 (.09)	2160	3430 (.02)	6300	9970
4	(24)	78 (12)	123 (6.1)	195 (3.0)	272 (1.8)	355 (1.2)	563 (.60)	898 (.30)	1630 (.12)	2580 (.06)	4100 (.03)	7540 (.01)	
5	58 (30)	91 (15)	143	226		412	653	1 040 L	1800	2000	1,760	8750	
6	66 (35)	103 (17)	164	257	358 (2.6)	468	742	1180	2150	3700	51100	0020	
	(39)	115 (20)	183	287	400 (2.9)	523	829	1320	2400	3800	6010		
	82 (43)	127 (22)	202	317	442 (3.2)	578	915	1460	2650	4190	6660		
9	(47)	139 (23)	221	347		632	1000	1600	2900	4580	7290		
10	100 (47)	154 (24)	240 (12)	376 (6.2)	524 (3.8)	685 (2.5)	1090 (1.2)	1730 (.62)	3150 (.25)	4970 (.12)	7900 (.06)		

Table 3b4 Sampling Plans for β = 1, r = .90

							n						
c			(t/p)	x 100	Ratio	for w	hich P	(A) =	.10 (0	r less)		
_	200	150	100	80	50	25	15	10	8.0	5.0	2.5	1.5	1.0
0	11 (4.4)	15 (3.3)	22 (2.2)	28 (1.7)	44 (1.1)	88 (•55)	146 (.33)	219 (.22)	274 (.18)	438 (.11)	876 (.05)	1,460	2,190 (.02)
1	19 (18)	26 (13)	38(9.0)	47 (7.2)	75 (4.5)	148 (2.2)	248 (1.3)	370 (.92)	463 (.73)	740 (.45)	1,480	2,460	3,710 (.09)
2	27 (29)	35 (22)	52 (15)	65 (12)	102 (7.7)	205 (3.8)	339 (2.2)	507 (1.5)	634 (1.2)	1,010 (.77)	2,020 (.38)	3,370	5,070 (.15)
3	34 (39)	44 (30)	65 (20)	81 (16)	129 (10)	257	426	636	795	1,270 (1.0)	2,540	4.230	6.360
4	40 (49)	53 (36)	78 (24)	97 (19)	156 (12)	307	509	761	952	1,520 (1.2)	3.040	5.060	7.610
5	47 (55)	(41)	91 (29)	113 (22)	181 (14)	357	591	883	1,100	1,760 (1.4)	3,530	5,870	8.830
6	53 (61)	70 (46)	103 (30)	128 (25)	205 (15)	405 (7.7)	671 (4.6)	1,000 (3.1)	1,250 (2.5)	2,000 (1.5)	4,000 (.78)	6,670 (.46)	
7	60 (66)	78 (51)	115 (33)	143 (27)	229 (16)	453 (8.4)	750 (5.0)	1,120 (3.3)	1,400 (2.7)	2,240 (1.6)	4,480 (.85)	7,450 (.50)	
8	67 (70)	87 (53)	127 (36)	161 (28)	253 (18)	500 (9.0)	827 (5.4)	1,240 (3.6)	1,550 (2.9)	2,470 (1.8)	4,940 (.90)	8,220 (.54)	
9	72 (75)	95 (5 7)	139 (38)	176 (30)	277 (19)	547 (9.5)	905	1,350	1,690	2,700 (1.9)	5,400	8,990	
10	80 (76)	1 0 6 (58)	155 (39)	191 (31)	301 (20)	593 (10)	982	1,470	1,840	2,930 (2.0)	5.860	9,760	

Table 3b5 Sampling Plans for β = 1 1/3, r = .90

1													
							n					the fire and no.	
0			(t,	/ρ) x]	LOO Rat	io for	which	P(A)	= .10	(or le	ess)		To appropriate the second second
-	200	150	100	80	50	40	25	15	10	8.0	5.0	4.0	2.5
C		13 (8.3)	22 (5.6)	30 (4.5)	55 (2.8)	74 (2.3)	138 (1.4)	274 (.87)	461 (.58)	622 (.45)	1150	1540 (.23)	of material states
	(31)	(25)	(16)	51 (13)	94	126	236	463	778	3050	1050		1,000
3	(49)	,,,	(24)	(19)	128	174	323	634	3070	7 440	2562		6000
	(59)		65 (30)	87 (24)	163 (15)	218 (12)	405	795	1340	1810	3370	4450 (1.2)	8570
4	(67)	,,,,	78 (34)	105 (27)	195 (17)	261 (13)	485	952	1600	2160	4000		•
5	(75)		91 (38)	(29)	226 (19)	30 <u>3</u> (15)	562	1100	1860	2510 (3.1)	4640	6180	
6	(81)	61 (61)	103 (42)	138 (33)	257 (20)	344 (16)	638 (10)	1250	2110		5270	7020	
7	(87)	69 (66))	13.5 (44)	156 (34)	287 (22)	385 (17)	713 (11)	1400	2360	3180 (3.5)	5890	7850	
8	(90)	76 (69)	127 (46)	173 (36)	317 (23)	425 (18)	787	1550	2600		6500	8660	
9	(94)	83 (72)	139 (49)	189 (37)	347 (24)	464 (19)	861	1690	2840	3840 (3.9)	7110	9470	
	66 (95)	93 (72)	154 (49)	205	376 (25)	504 (19)	934	1840	3080		7710	,	

Table 3b6 Sampling Plans for $\beta = 1.2/3$, r = .90

!"							-		/ 39 1	•) 0			
				Mark 1 44 4			n			and the springer is supported in	1000 00 000		2.41.000
i	c		(t/	ρ) x :	LOO Rat	io for	which	P(A)	= .10	(or le	ess)		·
-	20	0 150	100	08	65	50	40	25	15	10	8.0	5.0	4.0
and desired of the	(50	7 12) (14)) (10)	32 (8.1)	45 (6,6)	70 (5.0)	101 (4.1)	221 (2.5)	518 (1.5)	1010	1470 (.85)	3200	4650 (.40)
	45	(35)	30	54 (19)	77 (15)	118 (12)	172	374	874	1770	2\30 (1.8)	51:00	7960
	(65)	(48)		•	1.05 (21)	163 (16)	235 (13)	5.1.2	1200	2330 (3.2)	3390	7390	()
	(75)	(57)	65 (38)		130 (25)	205 (19)	296 (15)	64 <u>2</u> (9.6)		2930 (3,9)	4260 (3.1)	9280 (1.9)	
	(85)	(64)		(34)	160 (28)	245 (21)	354 (17)	769 (11)	1800	3520 (4,3)	5090		
	(90)	(69)		•	185 (30)	285 (23)	410 (18)	892 (11)	2090 (7.0)	4070 (4.6)	5910 (3.7)		
6	(97)		1.03 (48)		210 (32)	323 (24)	466 (19)	1010 (12)	2370	4620 (4.9)	6710		:
7	(105) (77)		168 (4 1)	235 (33)	361 (සර)	523. (20)	1130 (13)	2650 (7.8)	5 160 (5.2)	7500		
8	(108	(80)	127 (54)	185 (43)	259 (35)	398 (27)			2920 (8.1)		8280		
9	(110	, ,		203 (44)	284 (36)	439 (27)		1370	3190	6230 (5.6)	9050		
10		82 (83)	154 (57)	220 (45)	308 (37)	4 7 3 (28) (1480	3460	6760 (5 .7)	9820		

Table 3b7 Sampling Plans for β = 2, r = .90

	-	***	·				n						
c	· See management	The same of the sa	(t/p) x 1	00 Ra	tio for	r whic	h P(A)	= .10	(or 1	ess)		102 1
	200	150	120	100	80	65	50	40	25	50	15	10	8.0
0	6 (28)	10 (22)	15 (18)	22 (14)	3 ⁴ (12)	52 (9.6)	88 (7.4)	137 (5.9)	349 (3.7)			2170 (1.5)	3390 (1.2)
}	(60)			38 (30)	59 (24)	88 (19)	148 (15)	233 (12)	589 (7•5)	926 (5.9)	1620 (4.5)	3670 (3.0)	5720 (2.4)
5	(77)	24 (58)	36 (47)	52 (39)	80 (31)	121 (25)	205 (19)	319 (15)	806 (9.7)		2220 (5.9)		7830 (3.0)
3	(88)	30 (68)	46 (54)	65 (45)	101 (36)	154 (29)	257 (22)	400 (18)	1010	1590 (9.0)		6300 (4.5)	9830
4	(99)	36 (74)	55 (59)	78 (50)	121 (39)	184 (31)	307 (24)	479 (20)	1210 (12)	1900 (9.9)	3330 (7.4)	7540 (4.9)	
5	2 5 (105)	42 (79)	64 (63)	91 (53)	140 (41)	213 (34)	357 (26)	555 (21)	1410 (13)	(10)	3870 (7.9)	8750 (5.3)	
6	(JJO) 59	48 (83)	73 (66)	103 (56)	161 (44)	242 (36)	405 (28)	631 (22)	1600 (14)	2510 (11)	4390 (8.4)		:
7	32 (115)	54 (86)	81 (70)	115 (58)	181 (46)	271 (37)	453 (29)	705 (23)	1780 (14)	2800 (11)	4900 (8.7)		-
8	36 (118)	60 (89)	90 (72)	127 (60)	199 (47)	299 (38)	500 (30)	778 (24)	1970 (15)	3090 (12)	5410 (9.0)		1
9	39 (123)	65 (91)	98 (74)	139 (62)	218 (49)	327 (40)	546 (31)	851 (24)	2150 (15)	3380 (12)	5920 (9.3)		- dan plant of the
10	45 (123)	73 (91)	109 (74)	154 (62)	236 (50)	354 (41)	593 (31)	923 (25)	2340 (16)	3670 (12)	6240 (9.6)		

Table 3b8 Sampling Plans for $\beta = 2 1/2$, r = .90

									n			-		*** **
	C			(t/p) x 1	00 Ra	tio f	or wh	ich P(A) = .	10 (or	less)	**	
		500	150	120	100	80	65	50	40	30	25	20	15	12
:	0	(43)	8 (32)	14 (26) (51 55	39) (17	64) (14	124	217 (8.7)	439) (6.5	700 (5.3	1210	2480 (3.2)	
	1	(72)	14 (57)) (38)	(30)	109	211	367) (15)	7/17	1180	2050	4180 (5.7)	7270
1	5	(94)	20 (70)	33 (57)	52 (47)	90 (37)	149) (30)	289 (23)	502 (19)	1010	1610 (12)	2800 (9.4)	5720	9950
	3	(105)	25 (79)	42 (63)	65 (53)	113 (42)	189 (34)		წ30 (21)	1270 (14)	2030 (13)	3520 (10)	7180 (7.9)	().0)
	4	16 (113)		51 (68)	78 (57)	135 (45)	226 (37)	434	754	1520 (17)	2420 (14)	4210 (11)	8600 (8.6)	
and december of	5	19 (118)	35 (89)	59 (72)	91 (60)	159 (47)	263 (38)	504 (30)	875 (24)	1770 (18)	2810 (15)	4880 (12)	9970 (9.0)	
-	1	21 (125)	40 (93)	67 (75)	103	180		570	993	2010	3190 (15)	5540 (12)	().0)	
		24 (128)	45 (96)	75 (77)	115 (65)	201 (51)	333 (42)	640 (32)	1110 (25)	2240	3570 (16)	6200 (13)		
	8	27 (131)	49 (99)	83 (79)	127 (67)	222 (53)	368 (43)	706	1230		3940 (16)	6840 (13)		
	-	29 (135)	54 (100)	90 (81)	139 (68)	243 (54)	الركا	770	1340 (27)	2710	4310	7480		
1	.0	33 129)	60 (101)	100	15/1	262	Lor	0.0	- 1	2940	4670	(13) 8110 (14)		
		(+	/0) x	7.00		_								

Table 3cl Sampling Plans for $\beta = 1/3$, r = .99

	-	-		name allows a name annualise	on made		n						
C			(t/p)	x 100	Ratio	for w	hich F	P(A) =	.10 (or less	3)		
	1500	1000	500	200	100	50	10	5.0	1.0	•50	.10	.050	.010
С	93 (.01)	107	134	183	230	288	495	622	1070	1360	2300	2880	4950
1	159 (1.1)	182 (.75)	229 (.37)	309 (.15)	389 (.07)	486 (.04)	837	1050	1800	2290	3890	4860	8370
	217 (5.4)	249	313	422 (.73)	532	665	1150	מוליו ד	2470	3130	5320	6650	
3	(15) 543	312 (8.4)	393 (4.2)	530 (1.7)	668 (.87)	835 (.44)	1440 (.08)	1810	3090 (.01)	3930	6680	8350	
4	326 (22)	374 (15)	470	634 (3.0)	799	999	1720	2160	3700	4700	8000	9 990	
5	379 (32)	433 (22)	546 (11)	736	928	1160	2000	2510	-	5460 (.01)	9280		
6	430 (44)	492 (30)	619 (15)	836	1050	1320	2270	2850	4880 (.03)	6200			
7	480 (56)	550 (37)	692 (18)	934	1180	1470	2530	3180	5450 (.04)	6930			
8	530 (68)	607 (46)	764 (23)	1030	1300	1630	2790	3510	6020	7640			
9	580 (80)	664 (53)	836 (27)	1130	1420	1780	3060	3840		8360		5 1000	
10	629 (93)	720 (62)	906 (31)	1220	1540	1930	3320	4170	7140 (.06)	9070			

Table 3c2 Sampling Plans for $\beta = 1/2$, r = .99

	This is			for our sign		en equal a subscript	n	0-01-000m.	6- 40 F1	emiliana e cu			Amer 1 = 00 0
c	metal present to pre-	-	(t/) x 100	O Rati	o for	which	P(A) =	.10 (or les	s)	No. No. of the Contract of the	and Affiliate reprinted to be assumed two.
	1500	1000	500	200	100	50	25	10	5.0	2.5	1.0	.50	.10
0	60 (.71)	73 (.50)	103	163 (.10)	230 (.05)	324 (.02)	461 (.01)	683	1030	1540	2330	3250	6840
1	101 (12)	123 (8.1)	175 (4.0)	276 (1.6)	389 (.82)	548 (.41)	778 (.20)	1220	1730 (.04)	2430 (.02)	3930 (.01)	5480	
2	138 (35)	170 (23)	240 (11)	377 (4.6)	532 (2.3)	750 (1.2)	1070 (.59)	1660 (.24)	2370	3330 (.06)	5380 (.02)	7500 (.01)	
3	175 (60)	213 (40)	301 301	474 (8.1)	668 (4.1)	941 (2.0)	1340 (1.0)	2090 (.42)	2970 (.21)	4180 (.10)	6750 (.04)	9410 (.02)	
4	209 (88)	255 (59)	360 (30)	567 (12)	799 (5.9)	1130 (3.0)	1600 (1.5)	2500 (.62)	3550 (•30)	5000 (.15)	8080 (.06)		
5	243 (125)	296 (77)	418 (38)	658 (15)	928 (7.8)	1310 (4.0)	1860 (1.9)	2900 (.80)	4120 (.38)	5800 (.20)	9370 (.08)		
6	276 (140)	336 (94)	474 (47)	747 (19)	1050 (9.6)	1480 (4.8)	2110 (2.4)	3290 (1.0)	4680 (.50)	6580 (.25)			1 1 1 1
7	308 (165)	376 (106)	530 (5 5)	835 (22)	1180 (11)	1660 (5.6)	2360 (2.8)	3680 (1.1)	5230 (•57)	7360 (.28)			
8	340 (190)	415 (125)	585 (65)	921 (26)	1300 (13)		2600 (3.2)			8120			
9	372 (210)	454 (140)	640 (71)	1010 (28)	1420 (14)	2000 (7.2)	2840 (3.6)	4440 (1.4)	6320 (.73)	8830 (.37)		ň	
10	403 (230)			1090	1540 (16)	2170 (8.0)	3080 (4.0)	4820 (1.6)	6850 (.80)	9630 (.40)			

Table 3c3 Sampling Plans for $\beta = 2/3$, r = .99

							n						
	e		(t	/p) x]	LOO Rat	io fo	r which	h P(A)	= .10	or les	 SS		
	1500	1000	500	300	200	100	50	25	15	10	5.0	2.5	1.0
	38 (4.9) (3.3	79) (1.6	109) (1.0)	143 (.67)	230 (•33)	366 (.16)	576	808	1060	1690 (.01)		
]	(41)	84 (30)	133 (14)	185	243	389	617	072	7.270	7.7700	2860 (.14)	4580 (.07)	8280
2	(91)	114 (60)	181 (30)	253 (18)	(12) (13)	532	845	1330	1870	2150	3910 (.29)	6060	(,02
3	(137)	144) (92)	227 (46)	318 (27)	418 (18)	668	1060	1670	2340	3080 (.91)	liazo	7860	
4	(184)	174 (115)	271 (61)	381 (36)	500 (24)	800 (12)	1270	2000	2800	3680		alina	
5	(215)	202 (145)	314 (75)	442 (45)	580 (30)	928 (15)	1470		3250	4270	6820	(.50)	
6	(250)	229 (170)	357 (87)	501 (52)	658 (35)	1050 (17)	1670		3700	4850	7740		
7	(290)	/	399 (99)	561 (59)		1180 (19)	1870	2940 (4.9)	4130	5420	8650		
8	(315)	(SJS)	440 (105)	619 (65)	812		2060 (10)		4560	5990	9550		
ı		309 (230)	482 (117)				2260		4990	6550	(
.0	-/1	335 (250)	522 (126)	734 (76)	963	1540	2450	_	5410	7100			

Table 3c4 Sampling Plans for $\beta=1, \ r=.99$

			THE R P. LEWIS CO., LANSING		minimum of the state of the sta		n					-	
С		to area of the control of the	(t/	p) x 1	00 Rat	io for		P(A)	= .10	(or le	ss)		
~	1500	1000									15	10	5.0
0	16	(22) 23	29 (17)	46 (11)		114	230	291	461 (1.1	000	1520 (.34)		
1	(132)	40 (88)	49 (72)	78 (45)	130 (27)	194 (18)	389 (9.1)	492	778	1530	2560 (1.4)	2820	7700
2			(120) (120)	107	179 (45)	266 (30)	532 (15)	674 (12)	1070	2090 (3.9)	3500	5220	(• 40
3	(305)		85 (162)		225	334 (40)	668 (20)	846 (16)		2690	4400 (3.1)	6550	
-		82 (245)		163 (120)	269 (73)	400 (49)	799 (24)	1010 (19)	1600 (12)	33.40		7840	
5	(422)		1.18 (225)		312 (83)	464 (56)	928 (28)	(22) 1180	1850 (14)	3640	_	9100	
	73 (470)		134 (250)		355 (92)	526 (62)	1060 (31)	1340 (24)	2110 (15)	4130 (7.9)	6930		
1					396 (100)	588 (67)	1180 (33)	1490 (26)	2360 (16)	4620 (8.6)	7750		
i			. ,	265 (175)	437 (105)	649 (72)	1300 (36)	1650 (28)	2600 (18)	5100 (9.2)	8550		
(99 570)		184 (298)	290 (189)	478 (112)	710 (76)		1800 (30)	2340 (19)	5570 (9-7)	9350		
	10 580)	161 (390)	200	314 (197)	519 (118)			1950 (31)	308 0	6050 (10)	,,,,,		

Table 3c5 Sampling Plans for $\beta = 1 \frac{1}{3}$, r = .99

;		1					n		****	a married relativistic relativistic (as a			As Many are many as
c		<u></u>	(t/r) x 10	O Rati	o for	which	P(A) =	.10 (or le	ss)		
	1500	1000	800	500	300	200	150	100	80	50	25	15	10
0	(77)	11 (56)	15 (44)	27 (28)	53 (17)	91 (11)	134 (8.5)		307 (4.6)	576 (2.8)		2880	4900 (.58)
1		19 (162)	26 (1 27)	46 (81)	90 (49)	155 (32)	227 (24)	389 (16)	519 (13)	973	2460		8280
2	(350)	26 (240)	3 ⁴ (195)	63 (123)	124 (73)	212 (48)	311 (36)	532 (24)	709 (19)	1330 (12)	3370	6650 (3.6)	
3	(420)	33 (295)	43 (240)	80 (151)	157 (89)	267 (60)	391 (45)	668 (30)	891 (24)	1670. (15)		8350 (4.4)	
4		39 (345)	52 (275)	95 (175)	187 (104)	320 (68)	467 (52)	799 (34)	1070 (28)	2000		9990 (5.3)	
5		46 (385)	60 (305)	110 (194)	217 (115)	371 (76)	542 (57)	928 (38)	1240 (31)	2320 (19)	5870 (9.7)	= 124	
6	(610)	52 (410)	69 (325)	(210)	247 (124)	421 (82)	616 (61)	1050 (41)	1410 (33)	2630 (21)	6670 (10)		
7	36 (650)	58 (440)	77 (350)	141 (220)	276 (132)	471 (87)	688 (65)	1180 (43)	1570 (3 5)	2940 (22)	7450 (11)		
8	40 (680)	65 (458)	85 (367)	157 (225)	305 (139)	520 (92)	760 (69)	1300 (46)	1730 (37)	3250 (23)	8220		
9	43 (720)	70 (485)	93 (383)	172 (235)	333 (144)	568 (95)	831 (72)	1420 (48)	1900 (38)	3550 (24)	9000		
10		78 (490)	103 (385)	187 (245)	362 (150)	616 (100)	901 (73)	1540 (50)	2060 (40)	3850 (25)	9750 (12)		×

Table 3c6 Sampling Plans for $\beta = 1$ 2/3, r = .99

						TO THE STATE OF TH	n	ter a code angle Sarg	A SAME OF STREET		COLOR Mar June		e (mark of the sage)
С			(t/p)) x 100	Ratio	for	which	P(A)	= .10	(or le	ess)	. 1904	yeeld if regions degramate is it
	1000	800	500	300	250	200	150	100	0 80	50	40	25	15
0		8 (76)	16 (50)	37 (30)	50 (2 5)	73 (20)	117	230	334 (8.2)	731 (5.1)	1050	2300 (2.6)	5360 (1.5)
1	(237)	13 (187)		63 (70)	85 (59)	123 (47)	198 (35)	389		1240 (14)	1770	3890 (6.0)	9050
2	(316)	18 (25 5)	38 (160)	86 (95)	116 (81)	169 (64)	272 (48)	53; (32)	2 771 (26)	1690 (16)	2420 (13)	5320 (8.0)	
3		23 (303)	47 (193)	108 (115)	146 (95)	213 (76)	341 (57)		968 (30)	2120	3040 (15)	6680 (9.5)	
4		27 (345)	57 (215)	130 (129)	176 (106)	254 (85)	408 (64)	799	1158 (34)	2540 (21)	3630 (17)	8000	
5		32 (370)	66 (236)	150 (141)	205 (115)	295 (92)	473 (69)	928 (46)	1350 (37)	2950 (23)	4220 (19)	9280 (11)	
6	(490)	36 (395)		172 (148)	233 (123)		537 (74)	1060 (49)	1530 (39)	3340 (24)	4790 (20)	•	-
7		41 (410)	84 (262)	193 (154)	260 (129)	375 (104)	600 (77)	1180 (51)	1710 (41)	3740 (26)	5350 (21)		
8	32 (535)	45 (430)	92 (272)	213 (160)	287 (134)	414 (107)	663	1300	T880	4130 (27)	5910 (22)		
9	36 (540)	49 (445)	101 (281)	233 (166)	314 (139)	452 (111)	725 (83)	1420 (56)	2060 (45)	4510	6460 (22)		
10	40		.112	253	341	lion	786	1510	0000	4890	7010 (23)	,	

Table 3c7

Sampling Plans for $\beta = 2$, r = .99

I	1		marketing and a supplementary to the			-	n				6		,
С			(t/p)	x 100	Ratio	for w		P(A)	= .10	(or le	ess)		
	800	500	400	300	250	200	150	120	100	80	50	40	25
0	4 (110)	10 (71)	15 (58)	26 (43)	37 (37)	58 (30)	102	156 (17)	230 (15)		903 (7.4)	1,400	
1.		16 (150)	25 (120)	44 (90)	63 (74)	98 (60)	169 (45)	263 (36)	389 (29)	589 (24)	1530 (15)	2,360 (12)	
2	1	23 (190)	3 ⁴ (150)	60 (110)	86 (97)	134 (77)	232 (58)	360 (47)	532 (39)	806 (31)	2,090 (19)	3,230 (16)	8,320 (10)
3		(220)	43 (180)	76 (130)	108 (110)	167 (90)	291 (67)	452 (54)		1,010	2,620 (22)	4,050 (18)	
4	1	34 (240)	52 (190)	91 (140)	130 (120)	200 (99)	348 (74)	540 (60)	799 (49)	1,210 (40)	3,140 (25)	4,850 (21)	
5	(410)	40 (260)	60 (210)	105 (160)	150 (130)	232 (100)	403 (79)	627 (64)	928 (52)	1,410 (43)	3,640 (26)	5,620 (21)	
6		45 (270)	69 (220)	120 (160)	170 (140)	263 (110)	458 (83)	712 : (67)	1,050 (54)	1,600 (45)	4,130 (28)	6,380 (22)	
7	23 (450)	51 (280)	77 (230)	134 (170)	190 (140)	294 (110)	512 (87)	795 (70)	1,180 (58)	1,780 (47)	4,620 (29)	7,130 (23)	
8	25 (470)	57 (290)	85 (240)	148 (180)	210 (150)	325 (120)	565 (90)	878 (73)	(59)	1,970 (48)	5,090 (30)	7,870 (24)	
9	28 (475)	62 (300)	93 (240)	162 (182)	229 (153)	355 (122)	618 (92)	960 (74)	1420 (61)	2150 (50)	5570 (31)	8610 (25)	
10		69 (305)	103 (245)	175 (187)	249 (155)	385 (125)	670] (94)	.040 (76)	1540 (62)	2340 (51)	6040 (32)	9340 (25)	

Table 3c8
Sampling Plans for 8 = 2 1/2 = 20

1		-	-			rug bl	ans f	or $\beta =$	2 1/2), r	= •99			
-			-	. () -	arts Allere Adj No any substitute			n			a to Tenandaporous man	rabbanessen a sat taket	Andrew State of the Park of th	the Colonial of the Colonial and M
1	С		ans . Among	(t/ρ)	x 100	Ratio	for v	which P	(A) =	.10	(or)	ess)	and anymorphism out of the majoring	The England I to the England
		500	400	300	250	200) 40	
		_	8 (83)	15 (64)	24 (53)	41 (43)	84 (32)		230	307	668	1200	0000	25 7430
!	2			26 (114)		69 (76)	141 (57)	248	389	671	1720	0000	(8.7) 3890	(5.4)
	3	11 (230) 14		(141)			195 (70)	339	532	918	7510	201.0	E	
i	- ((260) 17	23 (208) 27	(156)	(132)		(78)	426 (63) (668	1750	70/10	2800	1100	
	(280) 20	(225)	(170)			293 (84)	509 (68) (799	1380	2200	1. 550	0	or to dependent
	(295) 22	(238)	62 (178)		168 (119)	340 (89)	591 (71) (928 1	600	2600	E200	0000	1
	(312) 35	36 (250)	71 (185)	110 (155)	190 (124)	386 (93)	671 1 (74) (050 1	820	20E0 4	5000	(47)	
	(:	320) (38	41 (255)	79 (193) (213 (127)	431 (96)	750 1: (77) (6	180 2	030 3	מבולם	7700		
	(3	328) (45 265) (199) (165) (827 13 (79) (8	300 2	olio a	מ מקלים	1.00		
9	(3	34) (49 271) (203) (148 168) (135) (521 (101)	905 14 (80) (6	20 21 7) (5	450 4 54) (120 8 44) (ンン/ 120 84)		:
10	(3	4 35) (2	54 275) (105 204) (:	163 170) (279 137) (564 103)	982 1 5 (82) (6	40 26	60 4 5) (1	470 88	310 310		-
						-	-			-/ \) - /		1